Skip to main content
Log in

Toluene methylation to para-xylene

Modeling of fixed packed bed reactor

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

To investigate the effect of operational parameter and transport phenomena on para-xylene production from toluene methylation with methanol, a fixed bed tubular reactor packed with Al-HMS-5 mesoporous catalyst was numerically studied. A mechanistic Longmuir–Hinshelwood-type kinetic study has been implemented on a proposed reaction network based on former experimental observation and theoretical background. Kinetic parameters and activation energy related to proposed reaction network for toluene methylation were evaluated using nonlinear regression and Arrhenius plot, respectively. In addition, heat transfer, fluid flow, and chemical reaction equations consisting of toluene methylation and xylene isomerization were solved using finite element method. In order to optimize toluene methylation process, reaction temperature and residence time were investigated. The results showed that uniform distribution of temperature exists at the reactor. There is only deviation from uniform temperature at the reactor entrance, but in other places, the temperature distribution is uniform. As a result, fluid temperature quickly becomes the same as the wall temperature, making the toluene methylation reaction highly efficient. Finally, the residence time of 60 s and wall temperature of 425 K were recommended as optimum working values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Han J, Kim H. The reduction and control technology of tar during biomass gasification/pyrolysis: an overview. Renew Sustain Energy Rev. 2008;12(2):397–416.

    Article  CAS  Google Scholar 

  2. Collias DI, Harris AM, Nagpal V, Cottrell IW, Schultheis MW. Biobased terephthalic acid technologies: a literature review. Indus Biotechnol. 2014;10(2):91–105.

    Article  CAS  Google Scholar 

  3. Jong E, Higson A, Walsh P, Wellisch M. Product developments in the bio-based chemicals arena. Biofuels Bioprod Biorefin. 2012;6(6):606–24.

    Article  Google Scholar 

  4. Kang Z, Ding J, Fan L, Xue M, Zhang D, Gao L, et al. Preparation of a MOF membrane with 3-aminopropyltriethoxysilane as covalent linker for xylene isomers separation. Inorg Chem Commun. 2013;30:74–8.

    Article  CAS  Google Scholar 

  5. Trens P, Belarbi H, Shepherd C, Gonzalez P, Ramsahye NA, Lee U-H, et al. Adsorption and separation of xylene isomers vapors onto the chromium terephthalate-based porous material MIL-101 (Cr): an experimental and computational study. Microporous Mesoporous Mater. 2014;183:17–22.

    Article  CAS  Google Scholar 

  6. Zheng H, Yoshikawa M. Molecularly imprinted cellulose membranes for pervaporation separation of xylene isomers. J Membr Sci. 2015;478:148–54.

    Article  CAS  Google Scholar 

  7. Bokade V, Deshpande S, Patil R, Jain S, Yadav G. Toluene alkylation with methanol to p-xylene over heteropoly acids supported by clay. J Nat Gas Chem. 2007;16(1):42–5.

    Article  CAS  Google Scholar 

  8. Joshi P, Niphadkar P, Desai P, Patil R, Bokade V. Toluene alkylation to selective formation of p-xylene over co-crystalline ZSM-12/ZSM-5 catalyst. J Nat Gas Chem. 2007;16(1):37–41.

    Article  CAS  Google Scholar 

  9. Ji Y-J, Zhang B, Xu L, Wu H, Peng H, Chen L, et al. Core/shell-structured Al-MWW@ B-MWW zeolites for shape-selective toluene disproportionation to para-xylene. J Catal. 2011;283(2):168–77.

    Article  CAS  Google Scholar 

  10. Brown SH, Mathias MF, Ware RA, Olson DH. Selective para-xylene production by toluene methylation. Google Patents. 2003.

  11. Teng H, Wang J, Chen D, Liu P, Wang X. Silicalite-1 membrane on millimeter-sized HZSM-5 zeolite extrudates: controllable synthesis and catalytic behavior in toluene disproportionation. J Membr Sci. 2011;381(1):197–203.

    Article  CAS  Google Scholar 

  12. Mitra B, Kunzru D. Enhancing p-xylene productivity for disproportionation of toluene in microstructured reactors. Chem Eng Process. 2013;64:48–56.

    Article  CAS  Google Scholar 

  13. Liu N, Zhu X, Hua S, Guo D, Yue H, Xue B, et al. A facile strategy for preparation of phosphorus modified HZSM-5 shape-selective catalysts and its performances in disproportionation of toluene. Catal Commun. 2016;77:60–4.

    Article  CAS  Google Scholar 

  14. Martinez-Espin JS, De Wispelaere K, Erichsen MW, Svelle S, Janssens TV, Van Speybroeck V, et al. Benzene co-reaction with methanol and dimethyl ether over zeolite and zeotype catalysts: evidence of parallel reaction paths to toluene and diphenylmethane. J Catal. 2017;349:136–48.

    Article  CAS  Google Scholar 

  15. Zhu Z, Chen Q, Xie Z, Yang W, Li C. The roles of acidity and structure of zeolite for catalyzing toluene alkylation with methanol to xylene. Microporous Mesoporous Mater. 2006;88(1):16–21.

    Article  CAS  Google Scholar 

  16. Xue B, Li Y, Deng L. Selective synthesis of p-xylene by alkylation of toluene with dimethyl carbonate over MgO-modified MCM-22. Catal Commun. 2009;10(12):1609–14.

    Article  CAS  Google Scholar 

  17. Odedairo T, Balasamy R, Al-Khattaf S. Toluene disproportionation and methylation over zeolites TNU-9, SSZ-33, ZSM-5, and mordenite using different reactor systems. Ind Eng Chem Res. 2011;50(6):3169–83.

    Article  CAS  Google Scholar 

  18. Zhao Y, Tan W, Wu H, Zhang A, Liu M, Li G, et al. Effect of Pt on stability of nano-scale ZSM-5 catalyst for toluene alkylation with methanol into p-xylene. Catal Today. 2011;160(1):179–83.

    Article  CAS  Google Scholar 

  19. Ahn JH, Kolvenbach R, Al-Khattaf SS, Jentys A, Lercher JA. Methanol usage in toluene methylation with medium and large pore zeolites. ACS Catal. 2013;3(5):817–25.

    Article  CAS  Google Scholar 

  20. Ahn JH, Kolvenbach R, Gutiérrez OY, Al-Khattaf SS, Jentys A, Lercher JA. Tailoring p-xylene selectivity in toluene methylation on medium pore-size zeolites. Microporous Mesoporous Mater. 2015;210:52–9.

    Article  CAS  Google Scholar 

  21. Ali SA, Aitani AM, Čejka J, Al-Khattaf SS. Selective production of xylenes from alkyl-aromatics and heavy reformates over dual-zeolite catalyst. Catal Today. 2015;243:118–27.

    Article  CAS  Google Scholar 

  22. Hill I, Malek A, Bhan A. Kinetics and mechanism of benzene, toluene, and xylene methylation over H-MFI. ACS Catal. 2013;3(9):1992–2001.

    Article  CAS  Google Scholar 

  23. Aboul-Gheit AK, Aboul-Enein AA, Awadallah AE, Ghoneim SA. Para-xylene maximization. Part VIII: promotion of H-ZSM-5 zeolite by Pt and HF doping for use as catalysts in toluene alkylation with methanol. Chin J Catal. 2010;31(9):1209–16.

    Article  CAS  Google Scholar 

  24. Abdi Khanghah M, Behbahani RM, Hamoule T, Baghban A. Kinetic modeling and laboratory investigation of catalytic toluene methylation to para-xylene. Pet Sci Technol. 2017;35(18):1866–72.

    Article  CAS  Google Scholar 

  25. Sadeghi R, Shadloo MS, Jamalabadi MYA, Karimipour A. A three-dimensional lattice Boltzmann model for numerical investigation of bubble growth in pool boiling. Int Commun Heat Mass Transf. 2016;79:58–66.

    Article  Google Scholar 

  26. Sadeghi R, Shadloo M. Three-dimensional numerical investigation of film boiling by the lattice Boltzmann method. Numer Heat Transf Part A Appl. 2017;71(5):560–74.

    Article  CAS  Google Scholar 

  27. Safaei M, Togun H, Vafai K, Kazi S, Badarudin A. Investigation of heat transfer enhancement in a forward-facing contracting channel using FMWCNT nanofluids. Numer Heat Transf Part A Appl. 2014;66(12):1321–40.

    Article  CAS  Google Scholar 

  28. Goshayeshi H, Safaei M, Maghmoumi Y, editors. Numerical simulation of unsteady turbulent and laminar mixed convection in rectangular enclosure with hot upper moving wall by finite volume method. In: Proceedings of the 6th international chemical engineering congress and exhibition (ICheC’09); 2009: Iranian Society of Chemical Engineering Kish Island, Iran.

  29. Safaiy M, Maghmoumi Y, Karimipour A, editors. Numerical investigation of turbulence mixed convection heat transfer of water and drilling mud inside a square enclosure by finite volume method. In: AIP Conference Proceedings. 2012: AIP.

  30. Aboulhasan Alavi SM, Safaei MR, Mahian O, Goodarzi M, Yarmand H, Dahari M, et al. A hybrid finite-element/finite-difference scheme for solving the 3-D energy equation in transient nonisothermal fluid flow over a staggered tube bank. Numer Heat Transf Part B Fundam. 2015;68(2):169–83.

    Article  CAS  Google Scholar 

  31. Safaei M, Goshayeshi H. Numerical simulation of laminar and turbulent mixed convection in rectangular enclosure with hot upper moving wall. Int J Adv Des Manuf Technol. 2010;3(210):49–57.

    Google Scholar 

  32. Rahmanian B, Safaei MR, Kazi SN, Ahmadi G, Oztop HF, Vafai K. Investigation of pollutant reduction by simulation of turbulent non-premixed pulverized coal combustion. Appl Therm Eng. 2014;73(1):1222–35. https://doi.org/10.1016/j.applthermaleng.2014.09.016.

    Article  CAS  Google Scholar 

  33. Safaei M, Rahmanian B, Goodarzi M. Investigation of the coal diameter effect on pulverized coal combustion for pollutant reduction. J Math Comput Sci. 2014;12:143–51.

    Article  Google Scholar 

  34. Jamalabadi MYA, DaqiqShirazi M, Kosar A, Shadloo MS. Effect of injection angle, density ratio, and viscosity on droplet formation in a microfluidic T-junction. Theor Appl Mech Lett. 2017;7(4):243–51.

    Article  Google Scholar 

  35. Shadloo M, Hadjadj A, Hussain F. Statistical behavior of supersonic turbulent boundary layers with heat transfer at M∞ = 2. Int J Heat Fluid Flow. 2015;53:113–34.

    Article  Google Scholar 

  36. Shadloo M, Hadjadj A. Laminar-turbulent transition in supersonic boundary layers with surface heat transfer: a numerical study. Numer Heat Transf Part A Appl. 2017;72(1):40–53.

    Article  CAS  Google Scholar 

  37. Al-Khattaf S, Rabiu S, Tukur N, Alnaizy R. Kinetics of toluene methylation over USY-zeolite catalyst in a riser simulator. Chem Eng J. 2008;139(3):622–30.

    Article  CAS  Google Scholar 

  38. Rabiu S, Al-Khattaf S. Kinetics of toluene methylation over ZSM-5 catalyst in a riser simulator. Ind Eng Chem Res. 2008;47(1):39–47.

    Article  CAS  Google Scholar 

  39. Alabi W, Atanda L, Jermy R, Al-Khattaf S. Kinetics of toluene alkylation with methanol catalyzed by pure and hybridized HZSM-5 catalysts. Chem Eng J. 2012;195:276–88.

    Article  Google Scholar 

  40. Ashraf MT, Chebbi R, Darwish NA. Process of p-xylene production by highly selective methylation of toluene. Ind Eng Chem Res. 2013;52(38):13730–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjan Goodarzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdi-khanghah, M., Alrashed, A.A.A.A., Hamoule, T. et al. Toluene methylation to para-xylene. J Therm Anal Calorim 135, 1723–1732 (2019). https://doi.org/10.1007/s10973-018-7228-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7228-5

Keywords

Navigation