Journal of Thermal Analysis and Calorimetry

, Volume 133, Issue 1, pp 509–518 | Cite as

Thermal properties comparison of hybrid CF/FF and BF/FF cyanate ester-based composites

  • D. Luca Motoc
  • S. Ferrandiz Bou
  • R. Balart


Insights within thermal expansion, conductivity, and decomposition dependencies with temperature on symmetrical and unsymmetrical layered carbon (CF) or basalt (BF) fabrics in combination with flax fibers (FF) were approached. Driven by commercial application and environmental concerns, the paper draws attention on a modified formula of cyanate ester with a common epoxy resin under an optimized ratio of 70:30 (vol%) as well as on the hybrid reinforcements stacking sequences. Synergetic effects were debated in terms of the CF and BF stacking sequences and corresponding volume fraction followed by comparisons with values predicted by the deployment of hybrid mixtures rules (RoHM/iRoHM). CF hybrid architectures revealed enhanced effective thermophysical properties over their BF counterparts and both over the FF-reinforced polymer composite considered as a reference. Thermal conductivities spread between 0.116 and 0.299 W m−1 K−1 from room temperature up to 250 °C on all hybrid specimens, giving rise to an insulator character. Concerning the coefficient of thermal expansion, CF hybrid architectures disclosed values of 1.236 10−6 K−1 and 3.102 10−6 K−1 compared with BF affine exhibiting 4.794 10−6 K−1 and 6.245 10−6 K−1, respectively, with an increase in their volume fraction.


Carbon fiber Basalt fiber Flax fiber Hybrid architecture Cyanate ester resin Thermal properties 



The corresponding author gratefully acknowledges the financial assistance of German Academic Exchange Service—DAAD that enabled and supported the internship with Fraunhofer Research Institution for Polymeric Materials and Composites—PYCO, Germany. Many thanks go to Dr. Christian Dreyer and Dr. Maciej Gwiazda for the resin formula and access to the composite manufacturing technology.


  1. 1.
    Assarar M, Zouari W, Sabhi H, Ayad R, Berthelot J-M. Evaluation of the damping of hybrid carbon–flax reinforced composites. Compos Struct. 2015;132:148–54.CrossRefGoogle Scholar
  2. 2.
    Duc F, Bourban PE, Plummer CJG, Månson JAE. Damping of thermoset and thermoplastic flax fibre composites. Compos A Appl Sci Manuf. 2014;64:115–23.CrossRefGoogle Scholar
  3. 3.
    Saba N, Jawaid M, Alothman OY, Paridah MT. A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Constr Build Mater. 2016;106:149–59.CrossRefGoogle Scholar
  4. 4.
    Tian H, Zhang S, Ge X, Xiang A. Crystallization behaviors and mechanical properties of carbon fiber-reinforced polypropylene composites. J Therm Anal Calorim. 2017;128(3):1495–504.CrossRefGoogle Scholar
  5. 5.
    Alvarez V, Rodriguez E, Vázquez A. Thermaldegradation and decomposition of jute/vinylester composites. J Therm Anal Calorim. 2006;85(2):383–9.CrossRefGoogle Scholar
  6. 6.
    Manfredi LB, Rodríguez ES, Wladyka-Przybylak M, Vázquez A. Thermal degradation and fire resistance of unsaturated polyester, modified acrylic resins and their composites with natural fibres. Polym Degrad Stab. 2006;91(2):255–61.CrossRefGoogle Scholar
  7. 7.
    Lazko J, Landercy N, Laoutid F, Dangreau L, Huguet MH, Talon O. Flame retardant treatments of insulating agro-materials from flax short fibres. Polym Degrad Stab. 2013;98(5):1043–51.CrossRefGoogle Scholar
  8. 8.
    Bar M, Alagirusamy R, Das A. Flame retardant polymer composites. Fibers Polym. 2015;16(4):705–17.CrossRefGoogle Scholar
  9. 9.
    Kollia E, Loutas T, Fiamegkou E, Vavouliotis A, Kostopoulos V. Degradation behavior of glass fiber reinforced cyanate ester composites under hydrothermal ageing. Polym Degrad Stab. 2015;121:200–7.CrossRefGoogle Scholar
  10. 10.
    Jawaid M, Abdul Khalil HPS. Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohyd Polym. 2011;86(1):1–18.CrossRefGoogle Scholar
  11. 11.
    Azwa ZN, Yousif BF, Manalo AC, Karunasena W. A review on the degradability of polymeric composites based on natural fibres. Mater Des. 2013;47:424–42.CrossRefGoogle Scholar
  12. 12.
    H-y Cheung, M-p Ho, K-t Lau, Cardona F, Hui D. Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Compos B Eng. 2009;40(7):655–63.CrossRefGoogle Scholar
  13. 13.
    Dittenber DB, GangaRao HVS. Critical review of recent publications on use of natural composites in infrastructure. Compos A Appl Sci Manuf. 2012;43(8):1419–29.CrossRefGoogle Scholar
  14. 14.
    Faruk O, Bledzki AK, Fink H-P, Sain M. Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci. 2012;37(11):1552–96.CrossRefGoogle Scholar
  15. 15.
    Praveen RS, Jacob S, Murthy CRL, Balachandran P, Rao YVKS. Hybridization of carbon–glass epoxy composites: an approach to achieve low coefficient of thermal expansion at cryogenic temperatures. Cryogenics. 2011;51(2):95–104.CrossRefGoogle Scholar
  16. 16.
    Jawaid M, Abdul Khalil HPS, Alattas OS. Woven hybrid biocomposites: dynamic mechanical and thermal properties. Compos A Appl Sci Manuf. 2012;43(2):288–93.CrossRefGoogle Scholar
  17. 17.
    Swolfs Y, Gorbatikh L, Verpoest I. Fibre hybridisation in polymer composites: a review. Compos A Appl Sci Manuf. 2014;67:181–200.CrossRefGoogle Scholar
  18. 18.
    Rojo E, Alonso MV, Oliet M, Del Saz-Orozco B, Rodriguez F. Effect of fiber loading on the properties of treated cellulose fiber-reinforced phenolic composites. Compos B Eng. 2015;68:185–92.CrossRefGoogle Scholar
  19. 19.
    LeGault M. Natural fiber composites: market share, one part at the time. Compos World. 2016;5(2):68–75.Google Scholar
  20. 20.
    Joshi SV, Drzal LT, Mohanty AK, Arora S. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos A Appl Sci Manuf. 2004;35(3):371–6.CrossRefGoogle Scholar
  21. 21.
    Wambua P, Ivens J, Verpoest I. Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol. 2003;63(9):1259–64.CrossRefGoogle Scholar
  22. 22.
    Bertomeu D, García-Sanoguera D, Fenollar O, Boronat T, Balart R. Use of eco-friendly epoxy resins from renewable resources as potential substitutes of petrochemical epoxy resins for ambient cured composites with flax reinforcements. Polym Compos. 2012;33(5):683–92.CrossRefGoogle Scholar
  23. 23.
    Alam M, Akram D, Sharmin E, Zafar F, Ahmad S. Vegetable oil based eco-friendly coating materials: a review article. Arab J Chem. 2014;7(4):469–79.CrossRefGoogle Scholar
  24. 24.
    Bakare FO, Ramamoorthy SK, Åkesson D, Skrifvars M. Thermomechanical properties of bio-based composites made from a lactic acid thermoset resin and flax and flax/basalt fibre reinforcements. Compos A Appl Sci Manuf. 2016;83:176–84.CrossRefGoogle Scholar
  25. 25.
    Pardauil JJR, de Molfetta FA, Braga M, de Souza LKC, Filho GNR, Zamian JR, et al. Characterization, thermal properties and phase transitions of amazonian vegetable oils. J Therm Anal Calorim. 2017;127(2):1221–9.CrossRefGoogle Scholar
  26. 26.
    Głowińska E, Datta J, Parcheta P. Effect of sisal fiber filler on thermal properties of bio-based polyurethane composites. J Therm Anal Calorim. 2017;130(1):113–22.CrossRefGoogle Scholar
  27. 27.
    Mosiewicki MA, Aranguren MI. A short review on novel biocomposites based on plant oil precursors. Eur Polym J. 2013;49(6):1243–56.CrossRefGoogle Scholar
  28. 28.
    Lligadas G, Ronda JC, Galià M, Cádiz V. Renewable polymeric materials from vegetable oils: a perspective. Mater Today. 2013;16(9):337–43.CrossRefGoogle Scholar
  29. 29.
    Fombuena V, Sanchez-Nacher L, Samper MD, Juarez D, Balart R. Study of the properties of thermoset materials derived from epoxidized soybean oil and protein fillers. J Am Oil Chem Soc. 2013;90(3):449–57.CrossRefGoogle Scholar
  30. 30.
    Pil L, Bensadoun F, Pariset J, Verpoest I. Why are designers fascinated by flax and hemp fibre composites? Compos A Appl Sci Manuf. 2016;83:193–205.CrossRefGoogle Scholar
  31. 31.
    Wooster TJ, Abrol S, Hey JM, MacFarlane DR. Thermal, mechanical, and conductivity properties of cyanate ester composites. Compos A Appl Sci Manuf. 2004;35(1):75–82.CrossRefGoogle Scholar
  32. 32.
    Mallarino S, Chailan JF, Vernet JL. Glass fibre sizing effect on dynamic mechanical properties of cyanate ester composites I. Single frequency investigations. Eur Polym J. 2005;41(8):1804–11.CrossRefGoogle Scholar
  33. 33.
    Sothje D, Dreyer C, Bauer M, editors. Advanced possibilities in thermoset recycling. In: The 3rd international conference on thermosets. 2013; Berlin, Germany.Google Scholar
  34. 34.
    Yuan L, Huang S, Gu A, Liang G, Chen F, Hu Y, et al. A cyanate ester/microcapsule system with low cure temperature and self-healing capacity. Compos Sci Technol. 2013;87:111–7.CrossRefGoogle Scholar
  35. 35.
    Czigány T. Special manufacturing and characteristics of basalt fiber reinforced hybrid polypropylene composites: mechanical properties and acoustic emission study. Compos Sci Technol. 2006;66(16):3210–20.CrossRefGoogle Scholar
  36. 36.
    Marom G, Fischer S, Tuler FR, Wagner HD. Hybrid effects in composites: conditions for positive or negative effects versus rule-of-mixtures behaviour. J Mater Sci. 1978;13(7):1419–26.CrossRefGoogle Scholar
  37. 37.
    Torquato S. Random heterogeneous materials: microstructure and macroscopic properties. New York: Springer; 2002.CrossRefGoogle Scholar
  38. 38.
    Cherki A-B, Remy B, Khabbazi A, Jannot Y, Baillis D. Experimental thermal properties characterization of insulating cork–gypsum composite. Constr Build Mater. 2014;54:202–9.CrossRefGoogle Scholar
  39. 39.
    Bismarck A, Aranberri-Askargorta I, Springer J, Lampke T, Wielage B, Stamboulis A, et al. Surface characterization of flax, hemp and cellulose fibers; Surface properties and the water uptake behavior. Polym Compos. 2002;23(5):872–94.CrossRefGoogle Scholar
  40. 40.
    Motoc Luca D, Ferrandiz Bou S, Balart Gimeno R. Effects of fibre orientation and content on the mechanical, dynamic mechanical and thermal expansion properties of multi-layered glass/carbon fibre-reinforced polymer composites. J Compos Mater. 2014;49(10):1211–1221.CrossRefGoogle Scholar
  41. 41.
    CES EduPack. Granta Design; 2013.Google Scholar
  42. 42.
    Monteiro SN, Calado V, Rodriguez RJS, Margem FM. Thermogravimetric behavior of natural fibers reinforced polymer composites—An overview. Mater Sci Eng, A. 2012;557:17–28.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of Automotive and Transport EngineeringTransilvania University of BrasovBraşovRomania
  2. 2.Department of Mechanical and Materials EngineeringPolytechnic University of ValenciaAlcoy, AlicanteSpain

Personalised recommendations