Experimental investigation of a water/nanofluid jacket performance in stack heat recovery

Article
  • 11 Downloads

Abstract

The effects of nanofluids (Al2O3–water) on the overall thermal performance of an annular enclosure (or jacket) are experimentally investigated which is used for recovering waste heat from a typical stack of a gas heater. In the initial stages of the heating process, the inner cylindrical wall becomes hotter, while the bulk fluid is nearly at the preceding uniform temperature; hence, the wall heat flux is strongly enhanced at the beginning. Afterward a decline in the wall heat flux is observed due to increasing Rayleigh number and correspondingly generating cellular flows in the annulus that leads to temperature enhancement of the liquid. Using nanofluids has the advantage of improving key parameters such as Nusselt number. Nanofluids with higher nanoparticle concentrations need less response time to react to any changes in thermal environment, and consequently they have smaller time constant. Higher convective heat transfer coefficient as well as greater temperature uniformity in the enclosure is achieved by selecting nanofluids with larger values of nanoparticle concentration. The results also reveal that convective heat transfer coefficient and Nusselt number of nanofluids are comparatively enhanced with time, since hotter base fluid results in higher effective thermal conductivity.

Keywords

Heat transfer enhancement Nanofluid Waste heat recovery Annular enclosure Thermal performance 

List of symbols

\( A \)

Area (m2)

\( c_{\text{p}} \)

Specific heat (J kg−1 K−1)

\( D \)

Diameter (m)

\( h \)

Heat transfer coefficient (W m−2 K−1)

\( \mathop h\limits^{\_} \)

Average heat transfer coefficient (W m−2 K−1)

\( k \)

Thermal conductivity (W m−1 K−1)

\( M \)

Mass (kg)

\( \dot{m} \)

Mass flow rate (kg s−1)

\( Nu \)

Nusselt number

\( \mathop {Nu}\limits^{\_} \)

Average Nusselt number

\( Q \)

Heat (J)

\( q \)

Heat transfer rate (W)

\( q^{\prime \prime } \)

Heat flux (W m−2)

\( \bar{q}^{\prime \prime } \)

Average heat flux (W m−2)

\( Ra \)

Rayleigh number

\( T \)

Temperature (°C)

\( \mathop T\limits^{\_} \)

Average temperature (°C)

\( V \)

Volume (m3)

X

Temperature ratio

Y

Mass ratio

\( \bar{v} \)

Average velocity (m s−1)

Greek symbols

\( \zeta \)

Heat loss percentage

\( \delta \)

Boundary layer thickness (m)

\( \Delta \)

Conduction layer thickness (m)

\( \phi \)

Nanoparticles volume fraction

\( \rho \)

Density (kg m−3)

\( \tau_{\text{t}} \)

Time constant (s)

Subscripts

bf

Base fluid

e

Equivalent

eff

Effective

g

Gas

i

Inlet

l

Liquid

m

Mean or average

nf

Nanofluid

np

Nanoparticle

o

Outlet

S

Surface

t

Time (min)

vol

Volume concentration

References

  1. 1.
    Choi S, Siginer DA, Wang HP. Enhancing thermal conductivity of fluids with nanoparticles in development and applications of non-newtonian flows. New York: ASME; 1995. p. 99–105.Google Scholar
  2. 2.
    Ghadimi A, Saidur R, Metselaar H. A review of nanofluid stability properties and characterization in stationary conditions. Int J Heat Mass Transf. 2011;54:4051–68.CrossRefGoogle Scholar
  3. 3.
    Hwang Y, Lee JK, Lee JKU, Jeong Y, Cheong SI, Ahn YC, Kim SH. Production and dispersion stability of nanoparticles in nanofluids. Powder Technol. 2007;186:145–53.CrossRefGoogle Scholar
  4. 4.
    Bejan A, Karaus AD. Heat transfer handbook. Hoboken: Wiely; 2003.Google Scholar
  5. 5.
    Choi SUS. Nanofluid technology: current status and future research. Vienna, VA, US: Korea-US. Technical Conference on Strategic Technologies; 1998.Google Scholar
  6. 6.
    Masuda H, Ebata A, Teramae K, Hishinuma N. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Netsu Bussei. 1993;7:227–33.CrossRefGoogle Scholar
  7. 7.
    Sridhara V, Satapathy LN. Al2O3-based nanofluids: a review. Nnoscale Res Lett. 2011;6(456):1–16.Google Scholar
  8. 8.
    Grimm A. Powdered aluminum-containing heat transfer fluids. German Patent DE 4131516A1; 1993.Google Scholar
  9. 9.
    Esfe MH, Saedodin S, Mahian O, Wongwises S. Thermal conductivity of Al2O3/water nanofluids. J Therm Anal Calorim. 2014;117:675–81.CrossRefGoogle Scholar
  10. 10.
    Rashidi S, Mahian O, Languri EM. Applications of nanofluids in condensing and evaporating systems. J Therm Anal Calorim. 2018;131:2027–39.CrossRefGoogle Scholar
  11. 11.
    Hung YH, Chen YH, Teng TP. Feasibility assessment of thermal management system for green power sources using nanofluid. J Nanomaterials. 2013; Article ID 321261: 11.Google Scholar
  12. 12.
    Amani M, Amani P, Kasaeian A, Mahian O, Wongwises S. Thermal conductivity measurement of spinel-type ferrite MnFe2O4 nanofluids in the presence of a uniform magnetic field. J Mol Liq. 2017;230:121–8.CrossRefGoogle Scholar
  13. 13.
    Togun H, Abdulrazzaq T, Kazi SN, Badarudin A, Kadhum AAH, Sadeghinezhad E. A review of studies on forced, natural and mixed heat transfer to fluid and nanofluid flow in an annular passage. Renew Sustain Energy Rev. 2014;39:835–56.CrossRefGoogle Scholar
  14. 14.
    Ravnik J, Škerget L. A numerical study of nanofluid natural convection in a cubic enclosure with a circular and an ellipsoidal cylinder. Int J Heat Mass Transf. 2015;89:596–605.CrossRefGoogle Scholar
  15. 15.
    Amani M, Amani P, Kasaeian A, Mahian O, Pop I, Wongwises S. Modeling and optimization of thermal conductivity and viscosity of MnFe2O4 nanofluid under magnetic field using an ANN. Sci Rep. 2017;7:17369.CrossRefGoogle Scholar
  16. 16.
    Arani AAA, Kakoli E, Hajialigol N. Double-diffusive natural convection of Al2O3–water nanofluid in an enclosure with partially active side walls using variable properties. J Mech Sci Technol. 2014;28:4681–91.CrossRefGoogle Scholar
  17. 17.
    Abu-Nada E, Masoud Z, Oztop HF, Campo A. Effect of nanofluid variable properties on natural convection in enclosure. Int J Therm Sci. 2010;49:479–91.CrossRefGoogle Scholar
  18. 18.
    Amani M, Amani P, Mahian O, Estelle P. Multi-objective optimization of thermophysical properties of eco-friendly organic nanofluids. J Clean Prod. 2017;166:350–9.CrossRefGoogle Scholar
  19. 19.
    Esfe MH, Saedodin S, Mahian O, Wongwises S. Efficiency of ferromagnetic nanoparticles suspended in ethylene glycol for applications in energy devices: effects of particle size, temperature, and concentration. Int Commun Heat Mass Transf. 2014;58:138–46.CrossRefGoogle Scholar
  20. 20.
    Parizad RL, Rashidi S, Esfahani JA. Experimental investigation of nanofluid free convection over the vertical and horizontal flat plates with uniform heat flux by PIV. Adv Powder Technol. 2016;27:312–22.CrossRefGoogle Scholar
  21. 21.
    Amani M, Ameri M, Kasaeian A. Hydrothermal assessment of ferrofluids in a metal foam tube under lowfrequency magnetic field. Int J Therm Sci. 2018;127:242–51.CrossRefGoogle Scholar
  22. 22.
    Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement: gaps and challenges. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7070-9 (Accepted).Google Scholar
  23. 23.
    Moghadam AJ, Farzane-Gord M, Sajadi M, Hoseyn-zadeh M. Effects of CuO/water nanofluid on the efficiency of a flat-plate solar collector. Exp Thermal Fluid Sci. 2014;58:9–14.CrossRefGoogle Scholar
  24. 24.
    Ghadiri M, Sardarabadi M, Pasandideh-fard M, Moghadam AJ. Experimental investigation of a PVT system performance using nano ferrofluids. Energy Convers Manag. 2015;103:468–76.CrossRefGoogle Scholar
  25. 25.
    Moshizi SA, Malvandi A. Different modes of nanoparticle migration at mixed convection of Al2O3–water nanofluid inside a vertical microannulus in the presence of heat generation/absorption. J Therm Anal Calorim. 2016;126:1947–62.CrossRefGoogle Scholar
  26. 26.
    Javadi P, Rashidi S, Esfahani JA. Flow and heat management around obstacle by nanofluid and incidence angle. J Thermophys Heat Transf. 2017;31:983–8.CrossRefGoogle Scholar
  27. 27.
    Raei B, Shahraki F, Jamialahmadi M, Peyghambarzadeh SM. Experimental study on the heat transfer and flow properties of c-Al2O3/water nanofluid in a double-tube heat exchanger. J Therm Anal Calorim. 2017;127:2561–75.CrossRefGoogle Scholar
  28. 28.
    Shirejini SZ, Rashidi S, Esfahani JA. Recovery of drop in heat transfer rate for a rotating system by nanofluids. J Mol Liq. 2016;220:961–9.CrossRefGoogle Scholar
  29. 29.
    Shahriari A, Javaran EJ, Rahnama M. Effect of nanoparticles Brownian motion and uniform sinusoidal roughness elements on natural convection in an enclosure. J Therm Anal Calorim. 2018;131:2865–84.CrossRefGoogle Scholar
  30. 30.
    Terhan M, Comakli K. Design and economic analysis of a flue gas condenser to recover latent heat from exhaust flue gas. Appl Thermal Eng. 2016;100:1007–15.CrossRefGoogle Scholar
  31. 31.
    Shelke SA, Gohel NS. Heat transfer performance of a vertical thermosyphons heat pipe heat exchanger using hybrid nanofluid for automobile engine exhaust heat. Int J Curr Eng Technol. 2016;5:91–4.Google Scholar
  32. 32.
    Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids submicron metallic oxide particles. Exp Heat Transf Int. 1998;11:151–70.CrossRefGoogle Scholar
  33. 33.
    Xuan Y, Roetzel W. Conception for heat transfer correlation of nanofluids. Int J Heat Mass Transf. 2000;43:3701–7.CrossRefGoogle Scholar
  34. 34.
    Maxwell JC. A treatise on electricity and magnetism, vol. 1. Oxford: Clarendon; 1892.Google Scholar
  35. 35.
    Moffat R. Describing the uncertainties in experimental results. Exp Thermal Fluid Sci. 1988;1:3–17.CrossRefGoogle Scholar
  36. 36.
    Rohsenow WM, Hartnett JP, Cho YI. Handbook of heat transfer. New York: McGraw-Hill; 1998.Google Scholar
  37. 37.
    Bergman TL, Lavine AS, Incropera FP, Dewitt DP. Fundamentals of heat and mass transfer. New York: Wiley; 2011.Google Scholar
  38. 38.
    Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf. 2003;46:3639–53.CrossRefGoogle Scholar
  39. 39.
    Hwang KS, Lee JH, Jang SP. Buoyancy-driven heat transfer of water-based Al2O3 nanofluids in a rectangular cavity. Int J Heat Mass Transf. 2007;50:4003–10.CrossRefGoogle Scholar
  40. 40.
    Ho CJ, Chen MW, Li ZW. Numerical simulation of natural convection of nanofluid in a square enclosure: effects due to uncertainties of viscosity and thermal conductivity. Int J Heat Mass Transf. 2008;51:4506–16.CrossRefGoogle Scholar
  41. 41.
    Ho CJ, Liu WK, Chang YS, Lin CC. Natural convection heat transfer of alumina–water nanofluid in vertical square enclosures: an experimental study. Int J Thermal Sci. 2010;49:1345–53.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Faculty of Mechanical EngineeringShahrood University of TechnologyShahroodIran

Personalised recommendations