Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 133, Issue 3, pp 1563–1569 | Cite as

Thermal decomposition and thermal stability of potassium 3,3′-dinitrimino-5,5′-bis(1H-1,2,4-triazole)

  • Fang Bao
  • Gongzheng Zhang
  • Shaohua Jin
  • Yuping Zhang
  • Lijie Li
Article
  • 99 Downloads

Abstract

Potassium 3,3′-dinitrimino-5,5′-bis(1H-1,2,4-triazole) (K2DNABT), a new potential green primary explosive, was synthesized and characterized by IR spectroscopy, multinuclear NMR spectroscopy and single-crystal X-ray diffraction. The thermal decomposition and thermal stability of K2DNABT were investigated by the thermogravimetric differential thermal analysis and accelerating rate calorimeter. The thermal decomposition kinetic parameters (apparent activation energy and pre-exponential factor) under non-isothermal condition were calculated by Starink method. The initial decomposition temperature (Tp0) and critical temperature of thermal explosion (Tbp0) were calculated as 279.06 and 298.53 °C, respectively. The apparent activation energy and pre-exponential factor under adiabatic condition were also calculated. The self-heating decomposition started at 280.46 °C and ended at 295.42 °C, within the time span of 162.50 min. The self-accelerating decomposition temperature (TSADT, 50kg) was calculated as 276.55 °C. The detonation velocity (7.59 km s−1) and pressure (27.84 GPa) of K2DNABT were evaluated by Kamlet–Jacob equations. The superior calculated energetic performance shows that it can be considered as a potential candidate of lead-based primary explosives.

Keywords

Potassium 3,3′-dinitrimino-5,5′-bis(1H-1,2,4-triazole) Thermal decomposition Thermal stability K2DNABT ARC 

References

  1. 1.
    Ilyushin MA, Tselinsky IV, Shugalei IV. Environmentally friendly energetic materials for initiation devices. Cent Eur J Energ Mater. 2012;4:293–328.Google Scholar
  2. 2.
    Klapötke TM. Chemistry of high-energy materials. 2nd ed. Berlin: Walter de Gruyter; 2012.CrossRefGoogle Scholar
  3. 3.
    Klapötke TM, Mehta N. Lead-free primary explosives. Propellants Explos Pyrotech. 2014;39:7–8.CrossRefGoogle Scholar
  4. 4.
    Li YN, Wang BZ, Shu YJ, Zhai LJ, Zhang SY, Bi FQ, Li YC. Synthesis and properties of potassium 5,5′-azobis(1-nitraminotetrazolate): a green primary explosive with superior initiation power. Chin Chem Lett. 2017;28:117–20.CrossRefGoogle Scholar
  5. 5.
    Fronabarger JW, Williams MD, Sanborn WB, Parrish DA, Bichay M. KDNP-a lead free replacement for lead styphnate. Propellants Explos Pyrotech. 2011;36:459–70.CrossRefGoogle Scholar
  6. 6.
    Fischer D, Klapötke TM, Stierstorfer J. Potassium 1,1′-dinitramino-5,5′-bistetrazolate: a primary explosive with fast detonation and high initiation power. Angew Chem Int Ed. 2014;53:8172–5.CrossRefGoogle Scholar
  7. 7.
    He CL, Shreeve JM. Potassium 4,5-bis(dinitromethyl)furoxanate: a green primary explosive with a positive oxygen balance. Angew Chem Int Ed. 2016;55:772–5.CrossRefGoogle Scholar
  8. 8.
    Tang YX, He CL, Mitchell LA, Parrish DA, Shreeve JM. Potassium 4,4′-bis(dinitromethyl)-3,3′-azofurazanate: a highly energetic 3D metal-organic framework as a promising primary explosive. Angew Chem Int Ed. 2016;55:5565–7.CrossRefGoogle Scholar
  9. 9.
    Fu W, Zhao BJ, Zhang M, Li C, Gao HQ, Zhang J, Zhou ZM. 3,4-Dinitro-1-(1H-tetrazol-5-yl)-1H-pyrazol-5-amine (HANTP) and its salts: primary and secondary explosives. J Mater Chem A. 2017;5:5044–54.CrossRefGoogle Scholar
  10. 10.
    Zhang M, Fu W, Li C, Gao HQ, Tang LW, Zhou ZM. (E)-1,2-bis(3,5-dinitro-1H-pyrazol-4-yl)diazene—its 3D potassium metal-organic framework and organic salts with super-heat-resistant properties. Eur J Inorg Chem. 2017;22:2883–91.CrossRefGoogle Scholar
  11. 11.
    Li Y, Huang HF, Shi YM, Yang J, Pan RM, Lin XY. Potassium nitraminofurazan derivatives: potential green primary explosives with high energy and comparable low friction sensitivities. Chem Eur J. 2017;23:7353–60.CrossRefGoogle Scholar
  12. 12.
    Wang R, Xu H, Guo Y, Sa R, Shreeve JM. Bis[3-(5-nitroimino-1,2,4-triazole)]-based energetic salts: synthesis and promising properties of a new family of high-density insensitive materials. J Am Chem Soc. 2010;132:11904–5.CrossRefGoogle Scholar
  13. 13.
    Dippold AA, Klapötke TM. Nitrogen-rich bis-1,2,4-triazoles-a comparative study of structural and energetic properties. Chem Eur J. 2012;18:16742–53.CrossRefGoogle Scholar
  14. 14.
    Zhu JP, Jin SH, Yu YH, Zhang CY, Li LJ, Chen SS, Shu QH. Evaluation of thermal hazards and thermo-kinetic parameters of N,N′-dinitro-4,4′-azo-bis(1,2,4-triazolone) (DNZTO). Thermochim Acta. 2016;623:58–64.CrossRefGoogle Scholar
  15. 15.
    Zhang CY, Jin SH, Chen SS, Li LJ, Zhou C, Zhang Y, Shu QH. Thermal behavior and thermo-kinetic studies of 5,5′-bistetrazole-1,1′-diolate (1,1-BTO). J Therm Anal Calorim. 2017;129:1265–70.CrossRefGoogle Scholar
  16. 16.
    Bao F, Zhang GZ, Jin SH. Thermal decomposition behavior and thermal stability of DABT·2DMSO. J Therm Anal Calorim. 2018;131:3185–91.CrossRefGoogle Scholar
  17. 17.
    Bao F, Zhang GZ, Jin SH, Zhang CY, Niu H. Thermal decomposition and safety assessment of 3,3′-dinitrimino-5,5′-bis(1H-1,2,4-triazole) by DTA and ARC. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-6973-9.Google Scholar
  18. 18.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.CrossRefGoogle Scholar
  19. 19.
    Yan QL, Zeman S, Elbeih A, Song ZW, Malek J. The effect of crystal structure on the thermal reactivity of CL-20 and its C4 bonded explosives (1): thermodynamic properties and decomposition kinetics. J Therm Anal Calorim. 2013;112:823–36.CrossRefGoogle Scholar
  20. 20.
    Hu RZ, Gao SL, Zhao FQ. Thermal analysis kinetics. 2nd ed. Beijing: Science Press; 2008.Google Scholar
  21. 21.
    Xing XL, Zhao FQ, Ma SN, Xu SY, Xiao LB, Gao HX, Hu RZ. Thermal decomposition behaviour, kinetics, and thermal hazard evaluation of CMDB propellant containing CL-20 by microcalorimetry. J Therm Anal Calorim. 2012;110:1451–5.CrossRefGoogle Scholar
  22. 22.
    Yan QL, Zeman S, Šelešovský J, Svoboda R, Elbeih A. Thermal behavior and decomposition kinetics of Formex-bonded explosives containing different cyclic nitramines. J Therm Anal Calorim. 2013;111:1419–30.CrossRefGoogle Scholar
  23. 23.
    Zhang GY, Jin SH, Li LJ, Li YK, Wang DQ, Li W, Zhang T, Shu QH. Thermal hazard assessment of 4,10-dinitro-2,6,8,12-tetraoxa-4,10-diazaisowutrzitane (TEX) by accelerating rate calorimeter (ARC). J Therm Anal Calorim. 2016;126:467–71.CrossRefGoogle Scholar
  24. 24.
    Townsend DI, Tou JC. Thermal hazard evaluation by an accelerating rata calorimeter. Thermochim Acta. 1980;37:1–30.CrossRefGoogle Scholar
  25. 25.
    Gao HS, Chen LP, Chen WH, Bao SL. Thermal stability evaluation of β-artemether by DSC and ARC. Thermochim Acta. 2013;569:134–8.CrossRefGoogle Scholar
  26. 26.
    Wilberforce JK. The use of the accelerating rate calorimeter to determine the SADT of organic peroxides. J Therm Anal Calorim. 1982;25:593–6.CrossRefGoogle Scholar
  27. 27.
    Tang ZH, Ouyang YZ, Liang YZ, Rao LQ. Stability, detonation properties and pyrolysis mechanisms of polynitrotriprismanes C6H6-n(NO2)n (n = 1–6). J Cent South Univ Technol. 2011;18:1395–401.CrossRefGoogle Scholar
  28. 28.
    Wang F, Du HC, Zhang JY, Gong XD. Computational studies on the crystal structure, thermodynamic properties, detonation performance, and pyrolysis mechanism of 2,4,6,8-tetranitro-1,3,5,7-tetraazacubane as a novel high energy density material. J Phys Chem A. 2011;115:11788–95.CrossRefGoogle Scholar
  29. 29.
    Xiang F, Zhu WH, Xiao HM. Theoretical studies of energetic nitrogen-rich ionic salts composed of substituted 5-nitroiminotetrazolate anions and various cations. J Mol Model. 2013;19:3103–18.CrossRefGoogle Scholar
  30. 30.
    Singh R, Singh HJ, Sengupta SK. Computational studied on 1,2,4-triazoliun-based salts as energetic materials. J Chem Sci. 2015;127:1099–107.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Fang Bao
    • 1
  • Gongzheng Zhang
    • 1
  • Shaohua Jin
    • 2
  • Yuping Zhang
    • 3
  • Lijie Li
    • 2
  1. 1.School of Chemistry and Chemical EngineeringBeijing Institute of TechnologyBeijingChina
  2. 2.School of Materials Science and EngineeringBeijing Institute of TechnologyBeijingChina
  3. 3.Petroleum DepartmentChengde Petroleum CollegeChengdeChina

Personalised recommendations