Skip to main content
Log in

New thermal study of polymerization and degradation kinetics of methylene diphenyl diisocyanate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This work investigates the thermal polymerization process of a methylene diphenyl diisocyanate (MDI) monomer as well as its thermal degradation following the ICTAC recommendations. MDI monomer is widely used as a synthetic resin in the production of MDF panels, as it provides compaction of the eucalyptus fibers by polymerization. Thermogravimetry/derivative thermogravimetric-differential thermal analysis (TG/DTG-DTA), differential scanning calorimetry, and mid-infrared spectroscopy were used in this study. The polymerization process (An) and degradation (Fn) process exhibited activation energy equal to 149.70 and 80.22 kJ mol−1, respectively. The combined the FTIR and kinetic information makes it possible to suggest the mechanism reaction, which is an inedited data in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Product Safety Assessment. DOW Modified Methyl Diphenyl Diisocyanate (MDI) Products 2015;1–8.

  2. Hagerman L, Law B, Bledsoe T, Hettick J, Kashon M, Lemons A, Wisnewski A, Siegel P. The influence of diisocyanate antigen preparation methodology on monoclonal and serum antibody recognition. J Occup Environ Hygiene. 2016;13:829–39.

    Article  CAS  Google Scholar 

  3. Fug F, Rohe K, Vargas J, Nies C, Springborg M, Possart W. 4,4′-methylene diphenyl diisocyanate–conformational space, normal vibrations and infrared spectra. Polymer. 2016;99:671–83.

    Article  CAS  Google Scholar 

  4. Vyazovkin S, Sbirrazzuoli N. Isoconversional kinetic analysis of thermally. stimulated processes in polymers. Macromol Rapid Commun. 2006;27:1515–32.

    Article  CAS  Google Scholar 

  5. Sbirrazzuoli N, Vincent L, Mija A, Guigo N. Integral, differential and advanced isoconversional methods Complex mechanisms and isothermal predicted conversion–time curves. Chemom Intell Lab Syst. 2009;96:219–26.

    Article  CAS  Google Scholar 

  6. Vyazovkin S, Vincent L, Sbirrazzuoli N. Thermal denaturation of collagen analyzed by isoconversional method. Macromol Biosci. 2007;7:1181–6.

    Article  CAS  PubMed  Google Scholar 

  7. Jablonskli AE, Lang AJ, Vyazovkin S. Isoconversional kinetics of degradation of polyvinylpyrrolidone used as a matrix for ammonium nitrate stabilization. Thermochim Acta. 2008;474:78–80.

    Article  CAS  Google Scholar 

  8. Peterson JD, Vyazovkin S, Wight CA. Kinetic study of stabilizing effect of oxygen on thermal degradation of poly(methylmethacrylate). J Phys Chem B. 1999;103:8087–92.

    Article  CAS  Google Scholar 

  9. Arisawa H, Brill TB. Kinetics and mechanisms of flash pyrolysis of poly(methyl methacrylate) (PMMA). Combust Flame. 1997;109:415–26.

    Article  CAS  Google Scholar 

  10. Arii T, Ichihara S, Nakagawa H, Fujii N. A kinetic study of the thermal decomposition of polyesters by controlled-rate thermogravimetry. Termochim Acta. 1998;319:139–49.

    Article  CAS  Google Scholar 

  11. Zhang Q, Li H, Liu H. Study on polymerization kinetics of methylene diphenyl diisocyanate. Acta Chim Sinica. 2011;69:605–9.

    CAS  Google Scholar 

  12. Zhang J, Tang Y, Liu J, Chen Y. Thermal stability and thermal degradation reaction kinetics of 4,4′-Diphenylmethane diisocyanatetrimer. Asian J Chem. 2014;26:1527–9.

    CAS  Google Scholar 

  13. Vyadzovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochin Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  14. Netzsch—Thermokinetics. https://kinetics.netzsch.com/en/. Acessed 09 Sep 2017.

  15. Opfermann J. Kinetic analysis using a multivariate nonlinear regression. J Therm Anal Calorim. 2000;60:641–58.

    Article  CAS  Google Scholar 

  16. American Society for Testing and Materials—ASTM. ASTM-E1356: Standard test method for assignment of the glass transition temperatures by differential scanning calorimetry. West Conshohocken: ASTM; 2014.

  17. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  18. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  19. Moukhina E. Determination of kinetic mechanisms for reactions measured with thermoanalytical instruments. J Therm Anal Calorim. 2012;109(1203–121):4.

    Google Scholar 

  20. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci. 1964; 183–195.

  21. Pielichowski K, Czub P, Pielichowski J. The kinetics of cure of epoxides and related sulphur compounds study by dynamic DSC. Polymer. 2000;41:4381–8.

    Article  CAS  Google Scholar 

  22. Peterson JD, Vyadzovkin S, Wight CA. Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene). Macromol Chem Phys. 2001;202:775–84.

    Article  CAS  Google Scholar 

  23. Miller JN, Miller JC. Statistics and chemometrics for analytical chemistry. 6th ed. Harlow: Pearson Education Limited; 2010.

    Google Scholar 

  24. Monagle JJ. Carbodiimides III: conversion of isocyanates to carbodiimides catalyst studies. J Organ Chem. 1962;27:3851–5.

    Article  CAS  Google Scholar 

  25. Puszka A, Kultys A. New thermoplastic polyurethane elastomer based on aliphatic diisocyanate. J Therm Anal Calorim. 2017;128:407–16.

    Article  CAS  Google Scholar 

  26. Kong W, Lei Y, Jiang Y, Lei J. Preparation and thermal performance of polyurethane/PEG as novel form-stable phase change materials for thermal energy storage. J Therm Anal Calorim. 2017;130:1011–9.

    Article  CAS  Google Scholar 

  27. American Society for Testing and Materials—ASTM. ASTM-E1641: Standard test method for decomposition kinetics by thermogravimetry. West Conshohocken: ASTM; 1999.

  28. American Society for Testing and Materials—ASTM. ASTM-E1877: Standard practice for calculating thermal endurance of materials from thermogravimetric decomposition data. West Conshohocken: ASTM; 1999.

  29. National Institute of Standards and Technology—NIST. IR Spectrum methylene diphenyl diisocyanate. Webbook NIST; 2009.

  30. Silverstein RM, Webster FX, Kiemle DJ, editors. Spectrometric Identification of organic compounds. 7th ed. Wiley, 2005.

  31. Hatchett DW, Kodipilli G, Kinianjui JM, Benincasa F, Sapochak L. FTIR Analysis of thermally processed PU foam. Polym Degrad Stab. 2005;87:555–61.

    Article  CAS  Google Scholar 

  32. Duff DW, Maciel GE. Monitoring the thermal degradation of a isocyanurate-rich MDI-based resin by 15N and 13C CP/MAS NMR. Macromol. 1991;24:651–8.

    Article  CAS  Google Scholar 

  33. Brown TE, LeMay HE, Bursten BE. Murphy C, Woodward P.Chemistry: the central science. 9th ed. Boston: Pearson, 2005.

Download references

Acknowledgements

The authors wish to thank CAPES (proc. 024/2012 Pro-equipment), POSMAT/UNESP) and FAPESP (processes: 2013/09022-7 and 2017/08820-8), CNPq (Processes 302267/2015-8 and 302753/2015-0) for financial support, as well as Netzsch-Brazil for providing kinetic computational program (Netzsch kinetics Neo Trial).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilbert Bannach.

Additional information

The present article is based on the lecture presented at SiAT VIII conference in Punta Grossa - Brazil on August 13–15, 2017.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Supplementary material 2 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, J.E.E., Alarcon, R.T., Gaglieri, C. et al. New thermal study of polymerization and degradation kinetics of methylene diphenyl diisocyanate. J Therm Anal Calorim 133, 1455–1462 (2018). https://doi.org/10.1007/s10973-018-7211-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7211-1

Keywords

Navigation