Skip to main content
Log in

Interfacial liquid–vapor phase change and entropy generation in pool boiling experiment for titanium tetrachloride

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Interfacial temperatures and pressures in liquid and vapor phases near liquid–vapor interfaces in pool boiling experiment for titanium tetrachloride have been measured recently. The interfacial vapor temperature is higher than that of liquid phase. Specific entropy generation rate increases with net boiling flux, as does the temperature discontinuity. Although the discontinuities in the temperatures and the chemical potential exist across the interfaces, the Δsiso can be zero when a physical relation should be provided between the properties in each phase. The entropy generation rate depends on conditions existing in that phase and that in each phase near liquid–vapor interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

A :

Boiling area

d 1 :

Distance (mm)

h :

Specific enthalpy

Δh r :

Latent heat of vaporization (J mol−1)

k :

Thermal conductivity of pure copper (W m−1 K−1)

n :

Net boiling flux (mol m−2 s−1)

Δn :

Micro-molecules of the titanium tetrachloride

N :

Molecules of the titanium tetrachloride

p :

Pressure

Q :

Heat flux (kW m−2)

s :

Specific entropy

S :

Entropy

Δs iso :

Specific entropy generation rate (kJ mol−1 K−1)

S iso :

Total entropy of the isolated system

S g :

Interfacial entropy generation rate (kJ m−2 s−1 K−1)

T, T 1, T 2 :

Temperature (K)

u :

Intensive internal energy of the surface phase

U l :

Internal energy of the liquid

σ :

Surface tension

μ :

Chemical potential

l:

Liquid phase

v:

Vapor phase

s:

Interface phase

References

  1. Nagesh CHRVS, Rao CS, Ballal NB, Rao PK. Mechanism of titanium sponge formation in the kroll reduction reactor. Metall Mater Trans B. 2004;35(1):65–74.

    Article  Google Scholar 

  2. Wenhao W, Fuzhong W. Exergy destruction analysis of heat exchanger in waste heat recovery system in Kroll process. Int J Exergy. 2017;22(1):89–101. https://doi.org/10.1504/IJEX.2017.10001122.

    Article  Google Scholar 

  3. Wenhao W, Fuzhong W, Qingbo Y. Feasibility study for recovering waste heat in reduction system of Kroll process Energy analysis and economic valuation. Russ J Non-ferr Met. 2017;58(3):258–68. https://doi.org/10.3103/S1067821217030208.

    Article  Google Scholar 

  4. Subramanyam RB, Sundaram CV. Development of technologies for large scale production of titanium and magnesium metals at the defence metallurgical research laboratory, Hyderabad. Bull Mater Sci. 1996;19(6):921–38.

    Article  CAS  Google Scholar 

  5. Yuya K, Akihiro K, Tetsuya U. New smelting process for titanium: magnesiothermic reduction of TiCl4 into liquid Bi and subsequent refining by vacuum distillation. Metall Mater Trans B. 2015;46B(1):57–61.

    Google Scholar 

  6. Lee JC, Sohn HS, Jung JY. Effect of TiCl4 feeding rate on the formation of titanium sponge in the Kroll process. Kor J Met Mater. 2012;50(10):745–51. https://doi.org/10.3365/kjmm.2012.50.10.745.

    Article  CAS  Google Scholar 

  7. Kiyoshi S, Masanori Y, Hiroyuki K, Seiyu T, Susumu K. Temperature measurement in a titanium sponge and mathematical modeling for the vacuum distillation in kroll process. J MMIJ. 1996;112(4):257–62. https://doi.org/10.2473/shigentosozai.112.257.

    Article  Google Scholar 

  8. Putilin AI. A new hydrodynamic theory of forming block titanium sponge. JOM. 2011;63(5):66–8.

    Article  CAS  Google Scholar 

  9. Osamu T, Toru HO. High-speed titanium production by magnesiothermic reduction of titanium trichloride. Mater Trans. 2006;47(4):1145–54.

    Article  Google Scholar 

  10. Hildenbrand DL. Low-lying electronic states and revised thermochemistry of TiCl, TiCl2, and TiCl3. J Phys Chem A. 2009;113(8):1472–4.

    Article  CAS  PubMed  Google Scholar 

  11. Osamu T, Toru HO. Fundamental study on magnesiothermic reduction of titanium dichloride. Metall Mater Trans B. 2006;37B(5):823–30.

    Google Scholar 

  12. Fuzhong W, Chengtao G, Huixin J, Shouhua D. Analysis of energy for deoxidization-distillation process in titanium sponge combination production technology. Appl Mech Mater. 2013;368–370:697–701. https://doi.org/10.4028/www.scientific.net/AMM.368-370.697.

    Article  CAS  Google Scholar 

  13. Burande CS, Bhalekar AA. Thermodynamic stability of elementary chemical reactions proceeding at finite rates revisited using Lyapunov function analysis. Energy. 2005;30(6):897–913.

    Article  CAS  Google Scholar 

  14. Wenhao W, Fuzhong W, Qingbo Y, Huixin J. Experimental investigation of titanium tetrachloride in pool boiling heat transfer. Int J Heat Mass Transf. 2018;122:1308–12. https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.051.

    Article  CAS  Google Scholar 

  15. Dikici B, Eno E, Compere M. Pool boiling enhancement with environmentally friendly surfactant additives. J Therm Anal Calorim. 2014;116(3):1387–94.

    Article  CAS  Google Scholar 

  16. Akar S, Rashidi S, Esfahani JA. Second law of thermodynamic analysis for nanofluid turbulent flow around a rotating cylinder. J Therm Anal Calorim. 2017;4:1–12.

    Google Scholar 

  17. Wenhao W, Fuzhong W, Huixin J. Enhancement and performance evaluation for heat transfer of air cooling zone for reduction system of sponge titanium. Heat Mass Transfer. 2017;53(2):465–73. https://doi.org/10.1007/s00231-016-1836-z.

    Article  CAS  Google Scholar 

  18. Bornhorst WJ, Hatsopoulos GN. Analysis of a liquid vapor phase change by the methods of irreversible thermodynamics. J Appl Mech. 1967;34(4):840–6. https://doi.org/10.1115/1.3607845.

    Article  Google Scholar 

  19. Amin A. Enthalpy of vaporization, its temperature dependence and correlation with surface tension: a theoretical approach. Fluid Phase Equilibr. 2017;432:62–9.

    Article  CAS  Google Scholar 

  20. Chervonyj I, Listopad D. Thermodynamic laws of impurities in the titanium sponge inflow during its production. Acta Mechanica Slovaca. 2009;13(4):40–7. https://doi.org/10.2478/v10147-010-0035-z.

    Article  Google Scholar 

  21. Ward CA, Stanga D. Interfacial conditions during evaporation or condensation of water. Phys Rev E. 2001;64(051509):1–9. https://doi.org/10.1103/physreve.64.051509.

    Article  Google Scholar 

  22. Rahimi P, Ward CA. Effect of pressure on the rate of evaporation from capillaries: statistical rate theory approach. Int J Heat Mass Transf. 2004;47(5):877–86.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supposed by the National Natural Science Foundation of China (NO. 51574094), the Science and Technology Department of Guizhou Province under grant number 3009 in 2013, 4002 in 2014 and 2004 in 2014. And all co-authors thank the reviewers for the valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuzhong Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Wu, F., Yu, Q. et al. Interfacial liquid–vapor phase change and entropy generation in pool boiling experiment for titanium tetrachloride. J Therm Anal Calorim 133, 1571–1578 (2018). https://doi.org/10.1007/s10973-018-7203-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7203-1

Keywords

Navigation