Experimental study of the ignition temperatures of low-rank coals using TGA under oxygen-deficient conditions
- 25 Downloads
Abstract
The factors affecting the ignition temperatures of two low-rank coals were experimentally studied using thermogravimetric analysis. The experiments were conducted with coal powders of four different particle size distributions. The thermogravimetric analyzer was operated at three heating rates, 10, 20, and 30 °C min−1 and four oxygen concentrations of 3, 6, 9, and 12%. The results showed that the ignition temperature decreased by about 25 °C as the oxygen concentration increased from 3% to 12%. The standard deviation of the activation energy was 16.75% at a conversion degree of less than 0.4, and it decreased to 1.35% at the end of the combustion process. At a heating rate of 10 °C min−1, the ignition temperature increased by about 8 °C as the coal particle size increased by 100 μm. At a heating rate of 30 °C min−1, the effect of the particle size on the ignition temperature was enhanced and the ignition temperature increased to 15 °C.
Keywords
Ignition temperature Low-rank coal Oxygen-deficient combustion Coal particle size distribution ThermogravimetricNotes
Acknowledgements
The financial support from the National Key R&D Program of China (Grant No. 2017YFB0603901) is gratefully acknowledged.
References
- 1.Liu Y. China's carbon-emissions trading: overview, challenges and future. Renew Sustain Energy Rev. 2015;49:254–66.CrossRefGoogle Scholar
- 2.Xu WQ, Wan B, Zhu TY, Shao MP. CO2 emissions from China’s iron and steel industry. J Clean Prod. 2016;139:1504–11.CrossRefGoogle Scholar
- 3.Iftikhar Y, He W, Wang Z. Energy and CO2 emissions efficiency of major economies: a non parametric analysis. J Clean Prod. 2016;139:779–87.CrossRefGoogle Scholar
- 4.Anderson K. The trouble with negative emissions. Science. 2016;354(6309):182–3.CrossRefGoogle Scholar
- 5.Nica E. Environmentally sustainable economic growth, energy use, and CO2 emissions in China. Econ Manag Financ Mark. 2016;11(2):101–7.Google Scholar
- 6.Su T. The response of actual evaporation to global warming in China based on six reanalysis datasets. Int J Climatol. 2015;35(11):3238–48.CrossRefGoogle Scholar
- 7.Yue G, Cai R, Lu J, Zhang H. From a CFB reactor to a CFB boiler—the review of R&D progress of CFB coal combustion technology in China. Powder Technol. 2017;316:18–28.CrossRefGoogle Scholar
- 8.Shen B, Han Y, Price L, Lu H, Liu M. Techno-economic evaluation of strategies for addressing energy and environmental challenges of industrial boilers in China. Energy. 2017;118:526–33.CrossRefGoogle Scholar
- 9.Yang H, Lu J, Zhang H, Yue G, Guo Y. Coal ignition characteristics in CFB boiler. Fuel. 2005;84(14):1849–53.CrossRefGoogle Scholar
- 10.Kumar R, Singh RI. An investigation in 20 kWth oxygen-enriched bubbling fluidized bed combustor using coal and biomass. Fuel Process Technol. 2016;148(Supplement C):256–68.CrossRefGoogle Scholar
- 11.Lit QH, Zhang YG, Meng AH. Design and application of novel horizontal circulating fluidized bed boiler. In: Yue G, Zhang H, Zhao C, Luo Z, editors. Proceedings of the 20th international conference on fluidized bed combustion. Berlin, Heidelberg: Springer; 2010. p. 206–11.Google Scholar
- 12.Heng F, Qinghai L, Meng A, Yanguo Z. A damköhler number for evaluating combustion efficiency of horizontal circulating fluidized bed boilers. In: Li J, Wei F, Bao X, Wang W, editors. Proceedings of the 11th international conference on fluidized bed technology. Beijing, China: Chemical Industry Press; 2014. p. 613–8.Google Scholar
- 13.Aihong M, Qinghai L, Yanguo Z, Zhaojun W, Wenda D. Experimental Investigation on a 0.35 MWth coal-fired horizontal circulating fluidized bed boiler. In: Qi H, Zhao B, editors. Cleaner combustion and sustainable world. Berlin, Heidelberg: Springer; 2013. p. 651–6.Google Scholar
- 14.Wang Q, Luo Z, Li X, Fang M, Ni M, Cen K. A mathematical model for a circulating fluidized bed (CFB) boiler. Energy. 1999;24(7):633–53.CrossRefGoogle Scholar
- 15.Shi X, Lan X, Liu F, Zhang Y, Gao J. Effect of particle size distribution on hydrodynamics and solids back-mixing in CFB risers using CPFD simulation. Powder Technol. 2014;266(Supplement C):135–43.CrossRefGoogle Scholar
- 16.Hultgren M, Ikonen E, Kovács J. Oxidant control and air-oxy switching concepts for CFB furnace operation. Comput Chem Eng. 2014;61(Supplement C):203–19.CrossRefGoogle Scholar
- 17.Grotkjær T, Dam-Johansen K, Jensen AD, Glarborg P. An experimental study of biomass ignition. Fuel. 2003;82(7):825–33.CrossRefGoogle Scholar
- 18.Arenillas A, Rubiera F, Arias B, Pis JJ, Faundez JM, Gordon AL, et al. A TG/DTA study on the effect of coal blending on ignition behaviour. J Therm Anal Calorim. 2004;76(2):603–14.CrossRefGoogle Scholar
- 19.Avila I, Crnkovic PM, Luna CMR, Milioli FE. Use of a fluidized bed combustor and thermogravimetric analyzer for the study of coal ignition temperature. Appl Therm Eng. 2017;114:984–92.CrossRefGoogle Scholar
- 20.Niu S, Chen M, Li Y, Lu T. Combustion characteristics of municipal sewage sludge with different initial moisture contents. J Therm Anal Calorim. 2017;129(2):1189–99.CrossRefGoogle Scholar
- 21.Wang YF, Song YM, Zhi KD, Li Y, Teng YY, He RX, et al. Combustion kinetics of Chinese Shenhua raw coal and its pyrolysis carbocoal. J Energy Inst. 2017;90(4):624–33.CrossRefGoogle Scholar
- 22.Lu JJ, Chen WH. Investigation on the ignition and burnout temperatures of bamboo and sugarcane bagasse by thermogravimetric analysis. Appl Energy. 2015;160:49–57.CrossRefGoogle Scholar
- 23.Contreras ML, Garcia-Frutos FJ, Bahillo A. Study of the thermal behaviour of coal/biomass blends during oxy-fuel combustion by thermogravimetric analysis. J Therm Anal Calorim. 2016;123(2):1643–55.CrossRefGoogle Scholar
- 24.Kosowska-Golachowska M. Thermal analysis and kinetics of coal during oxy-fuel combustion. J Therm Sci. 2017;26(4):355–61.CrossRefGoogle Scholar
- 25.Magalhaes D, Kazanc F, Ferreira A, Rabacal M, Costa M. Ignition behavior of Turkish biomass and lignite fuels at low and high heating rates. Fuel. 2017;207:154–64.CrossRefGoogle Scholar
- 26.Naktiyok J, Bayrakceken H, Ozer AK, Gulaboglu MS. Investigation of combustion kinetics of Umutbaca-lignite by thermal analysis technique. J Therm Anal Calorim. 2017;129(1):531–9.CrossRefGoogle Scholar
- 27.Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, et al. ICTAC kinetics committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.CrossRefGoogle Scholar
- 28.Wang CB, Shao H, Lei M, Wu YH, Jia LF. Effect of the coupling action between volatiles, char and steam on isothermal combustion of coal char. Appl Therm Eng. 2016;93:438–45.CrossRefGoogle Scholar
- 29.Li YL, Xing XJ, Xu BJ, Xing YQ, Zhang XF, Yang J, et al. Effect of the particle size on co-combustion of municipal solid waste and biomass briquette under N2/O2 and CO2/O2 atmospheres. Energy Fuels. 2017;31(1):932–40.CrossRefGoogle Scholar
- 30.Shen J, Wang XS, Garcia-Perez M, Mourant D, Rhodes MJ, Li CZ. Effects of particle size on the fast pyrolysis of oil mallee woody biomass. Fuel. 2009;88(10):1810–7.CrossRefGoogle Scholar
- 31.Bai FT, Sun YH, Liu YM. Thermogravimetric analysis of Huadian oil shale combustion at different oxygen concentrations. Energy Fuels. 2016;30(6):4450–6.CrossRefGoogle Scholar
- 32.Qi X, Li Q, Zhang H, Xin H. Thermodynamic characteristics of coal reaction under low oxygen concentration conditions. J Energy Inst. 2017;90(4):544–55.CrossRefGoogle Scholar
- 33.Bridgeman TG, Jones JM, Shield I, Williams PT. Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel. 2008;87(6):844–56.CrossRefGoogle Scholar
- 34.Liu B, Zhang Z, Zhang H, Yang H, Zhang D. An experimental investigation on the effect of convection on the ignition behaviour of single coal particles under various O2 concentrations. Fuel. 2014;116:77–83.CrossRefGoogle Scholar
- 35.Jayaraman K, Gokalp I. Pyrolysis, combustion and gasification characteristics of miscanthus and sewage sludge. Energy Conv Manag. 2015;89:83–91.CrossRefGoogle Scholar
- 36.Zhang L, Zou C, Wu D, Liu Y, Zheng CG. A study of coal chars combustion in O2/H2O mixtures by thermogravimetric analysis. J Therm Anal Calorim. 2016;126(2):995–1005.CrossRefGoogle Scholar
- 37.Wang MY, Zhao R, Qing S, Liu YQ, Zhang AM. Study on combustion characteristics of young lignite in mixed O2/CO2 atmosphere. Appl Therm Eng. 2017;110:1240–6.CrossRefGoogle Scholar
- 38.Moon C, Sung Y, Ahn S, Kim T, Choi G, Kim D. Thermochemical and combustion behaviors of coals of different ranks and their blends for pulverized-coal combustion. Appl Therm Eng. 2013;54(1):111–9.CrossRefGoogle Scholar
- 39.Chao JN, Yang HR, Wu YX, Zhang H, Lv JF, Dong WG, et al. The investigation of the coal ignition temperature and ignition characteristics in an oxygen-enriched FBR. Fuel. 2016;183:351–8.CrossRefGoogle Scholar
- 40.Yan L, He B, Hao T, Pei X, Li X, Wang C, et al. Thermogravimetric study on the pressurized hydropyrolysis kinetics of a lignite coal. Int J Hydrogen Energy. 2014;39(15):7826–33.CrossRefGoogle Scholar
- 41.Li XG, Lv Y, Ma BG, Jian SW, Tan HB. Thermogravimetric investigation on co-combustion characteristics of tobacco residue and high-ash anthracite coal. Biores Technol. 2011;102(20):9783–7.CrossRefGoogle Scholar
- 42.Liu Z, Quek A, Kent Hoekman S, Srinivasan MP, Balasubramanian R. Thermogravimetric investigation of hydrochar-lignite co-combustion. Biores Technol. 2012;123(Supplement C):646–52.CrossRefGoogle Scholar
- 43.Niu S, Chen M, Li Y, Xue F. Evaluation on the oxy-fuel combustion behavior of dried sewage sludge. Fuel. 2016;178(Supplement C):129–38.CrossRefGoogle Scholar
- 44.Cai JM, Wu WX, Liu RH. An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass. Renew Sustain Energy Rev. 2014;36:236–46.CrossRefGoogle Scholar
- 45.Yuan Y, Li S, Zhao F, Yao Q, Long MB. Characterization on hetero-homogeneous ignition of pulverized coal particle streams using CH∗ chemiluminescence and 3 color pyrometry. Fuel. 2016;184(Supplement C):1000–6.CrossRefGoogle Scholar
- 46.Deng J, Li QW, Xiao Y, Wen H. The effect of oxygen concentration on the non-isothermal combustion of coal. Thermochim Acta. 2017;653:106–15.CrossRefGoogle Scholar
- 47.Wang C, Zhang X, Liu Y, Che D. Pyrolysis and combustion characteristics of coals in oxyfuel combustion. Appl Energy. 2012;97:264–73.CrossRefGoogle Scholar