Journal of Thermal Analysis and Calorimetry

, Volume 133, Issue 3, pp 1597–1607 | Cite as

Experimental study of the ignition temperatures of low-rank coals using TGA under oxygen-deficient conditions

  • Kunlin Cong
  • Yanguo Zhang
  • Yu Gan
  • Qinghai Li


The factors affecting the ignition temperatures of two low-rank coals were experimentally studied using thermogravimetric analysis. The experiments were conducted with coal powders of four different particle size distributions. The thermogravimetric analyzer was operated at three heating rates, 10, 20, and 30 °C min−1 and four oxygen concentrations of 3, 6, 9, and 12%. The results showed that the ignition temperature decreased by about 25 °C as the oxygen concentration increased from 3% to 12%. The standard deviation of the activation energy was 16.75% at a conversion degree of less than 0.4, and it decreased to 1.35% at the end of the combustion process. At a heating rate of 10 °C min−1, the ignition temperature increased by about 8 °C as the coal particle size increased by 100 μm. At a heating rate of 30 °C min−1, the effect of the particle size on the ignition temperature was enhanced and the ignition temperature increased to 15 °C.


Ignition temperature Low-rank coal Oxygen-deficient combustion Coal particle size distribution Thermogravimetric 



The financial support from the National Key R&D Program of China (Grant No. 2017YFB0603901) is gratefully acknowledged.


  1. 1.
    Liu Y. China's carbon-emissions trading: overview, challenges and future. Renew Sustain Energy Rev. 2015;49:254–66.CrossRefGoogle Scholar
  2. 2.
    Xu WQ, Wan B, Zhu TY, Shao MP. CO2 emissions from China’s iron and steel industry. J Clean Prod. 2016;139:1504–11.CrossRefGoogle Scholar
  3. 3.
    Iftikhar Y, He W, Wang Z. Energy and CO2 emissions efficiency of major economies: a non parametric analysis. J Clean Prod. 2016;139:779–87.CrossRefGoogle Scholar
  4. 4.
    Anderson K. The trouble with negative emissions. Science. 2016;354(6309):182–3.CrossRefGoogle Scholar
  5. 5.
    Nica E. Environmentally sustainable economic growth, energy use, and CO2 emissions in China. Econ Manag Financ Mark. 2016;11(2):101–7.Google Scholar
  6. 6.
    Su T. The response of actual evaporation to global warming in China based on six reanalysis datasets. Int J Climatol. 2015;35(11):3238–48.CrossRefGoogle Scholar
  7. 7.
    Yue G, Cai R, Lu J, Zhang H. From a CFB reactor to a CFB boiler—the review of R&D progress of CFB coal combustion technology in China. Powder Technol. 2017;316:18–28.CrossRefGoogle Scholar
  8. 8.
    Shen B, Han Y, Price L, Lu H, Liu M. Techno-economic evaluation of strategies for addressing energy and environmental challenges of industrial boilers in China. Energy. 2017;118:526–33.CrossRefGoogle Scholar
  9. 9.
    Yang H, Lu J, Zhang H, Yue G, Guo Y. Coal ignition characteristics in CFB boiler. Fuel. 2005;84(14):1849–53.CrossRefGoogle Scholar
  10. 10.
    Kumar R, Singh RI. An investigation in 20 kWth oxygen-enriched bubbling fluidized bed combustor using coal and biomass. Fuel Process Technol. 2016;148(Supplement C):256–68.CrossRefGoogle Scholar
  11. 11.
    Lit QH, Zhang YG, Meng AH. Design and application of novel horizontal circulating fluidized bed boiler. In: Yue G, Zhang H, Zhao C, Luo Z, editors. Proceedings of the 20th international conference on fluidized bed combustion. Berlin, Heidelberg: Springer; 2010. p. 206–11.Google Scholar
  12. 12.
    Heng F, Qinghai L, Meng A, Yanguo Z. A damköhler number for evaluating combustion efficiency of horizontal circulating fluidized bed boilers. In: Li J, Wei F, Bao X, Wang W, editors. Proceedings of the 11th international conference on fluidized bed technology. Beijing, China: Chemical Industry Press; 2014. p. 613–8.Google Scholar
  13. 13.
    Aihong M, Qinghai L, Yanguo Z, Zhaojun W, Wenda D. Experimental Investigation on a 0.35 MWth coal-fired horizontal circulating fluidized bed boiler. In: Qi H, Zhao B, editors. Cleaner combustion and sustainable world. Berlin, Heidelberg: Springer; 2013. p. 651–6.Google Scholar
  14. 14.
    Wang Q, Luo Z, Li X, Fang M, Ni M, Cen K. A mathematical model for a circulating fluidized bed (CFB) boiler. Energy. 1999;24(7):633–53.CrossRefGoogle Scholar
  15. 15.
    Shi X, Lan X, Liu F, Zhang Y, Gao J. Effect of particle size distribution on hydrodynamics and solids back-mixing in CFB risers using CPFD simulation. Powder Technol. 2014;266(Supplement C):135–43.CrossRefGoogle Scholar
  16. 16.
    Hultgren M, Ikonen E, Kovács J. Oxidant control and air-oxy switching concepts for CFB furnace operation. Comput Chem Eng. 2014;61(Supplement C):203–19.CrossRefGoogle Scholar
  17. 17.
    Grotkjær T, Dam-Johansen K, Jensen AD, Glarborg P. An experimental study of biomass ignition. Fuel. 2003;82(7):825–33.CrossRefGoogle Scholar
  18. 18.
    Arenillas A, Rubiera F, Arias B, Pis JJ, Faundez JM, Gordon AL, et al. A TG/DTA study on the effect of coal blending on ignition behaviour. J Therm Anal Calorim. 2004;76(2):603–14.CrossRefGoogle Scholar
  19. 19.
    Avila I, Crnkovic PM, Luna CMR, Milioli FE. Use of a fluidized bed combustor and thermogravimetric analyzer for the study of coal ignition temperature. Appl Therm Eng. 2017;114:984–92.CrossRefGoogle Scholar
  20. 20.
    Niu S, Chen M, Li Y, Lu T. Combustion characteristics of municipal sewage sludge with different initial moisture contents. J Therm Anal Calorim. 2017;129(2):1189–99.CrossRefGoogle Scholar
  21. 21.
    Wang YF, Song YM, Zhi KD, Li Y, Teng YY, He RX, et al. Combustion kinetics of Chinese Shenhua raw coal and its pyrolysis carbocoal. J Energy Inst. 2017;90(4):624–33.CrossRefGoogle Scholar
  22. 22.
    Lu JJ, Chen WH. Investigation on the ignition and burnout temperatures of bamboo and sugarcane bagasse by thermogravimetric analysis. Appl Energy. 2015;160:49–57.CrossRefGoogle Scholar
  23. 23.
    Contreras ML, Garcia-Frutos FJ, Bahillo A. Study of the thermal behaviour of coal/biomass blends during oxy-fuel combustion by thermogravimetric analysis. J Therm Anal Calorim. 2016;123(2):1643–55.CrossRefGoogle Scholar
  24. 24.
    Kosowska-Golachowska M. Thermal analysis and kinetics of coal during oxy-fuel combustion. J Therm Sci. 2017;26(4):355–61.CrossRefGoogle Scholar
  25. 25.
    Magalhaes D, Kazanc F, Ferreira A, Rabacal M, Costa M. Ignition behavior of Turkish biomass and lignite fuels at low and high heating rates. Fuel. 2017;207:154–64.CrossRefGoogle Scholar
  26. 26.
    Naktiyok J, Bayrakceken H, Ozer AK, Gulaboglu MS. Investigation of combustion kinetics of Umutbaca-lignite by thermal analysis technique. J Therm Anal Calorim. 2017;129(1):531–9.CrossRefGoogle Scholar
  27. 27.
    Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, et al. ICTAC kinetics committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.CrossRefGoogle Scholar
  28. 28.
    Wang CB, Shao H, Lei M, Wu YH, Jia LF. Effect of the coupling action between volatiles, char and steam on isothermal combustion of coal char. Appl Therm Eng. 2016;93:438–45.CrossRefGoogle Scholar
  29. 29.
    Li YL, Xing XJ, Xu BJ, Xing YQ, Zhang XF, Yang J, et al. Effect of the particle size on co-combustion of municipal solid waste and biomass briquette under N2/O2 and CO2/O2 atmospheres. Energy Fuels. 2017;31(1):932–40.CrossRefGoogle Scholar
  30. 30.
    Shen J, Wang XS, Garcia-Perez M, Mourant D, Rhodes MJ, Li CZ. Effects of particle size on the fast pyrolysis of oil mallee woody biomass. Fuel. 2009;88(10):1810–7.CrossRefGoogle Scholar
  31. 31.
    Bai FT, Sun YH, Liu YM. Thermogravimetric analysis of Huadian oil shale combustion at different oxygen concentrations. Energy Fuels. 2016;30(6):4450–6.CrossRefGoogle Scholar
  32. 32.
    Qi X, Li Q, Zhang H, Xin H. Thermodynamic characteristics of coal reaction under low oxygen concentration conditions. J Energy Inst. 2017;90(4):544–55.CrossRefGoogle Scholar
  33. 33.
    Bridgeman TG, Jones JM, Shield I, Williams PT. Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel. 2008;87(6):844–56.CrossRefGoogle Scholar
  34. 34.
    Liu B, Zhang Z, Zhang H, Yang H, Zhang D. An experimental investigation on the effect of convection on the ignition behaviour of single coal particles under various O2 concentrations. Fuel. 2014;116:77–83.CrossRefGoogle Scholar
  35. 35.
    Jayaraman K, Gokalp I. Pyrolysis, combustion and gasification characteristics of miscanthus and sewage sludge. Energy Conv Manag. 2015;89:83–91.CrossRefGoogle Scholar
  36. 36.
    Zhang L, Zou C, Wu D, Liu Y, Zheng CG. A study of coal chars combustion in O2/H2O mixtures by thermogravimetric analysis. J Therm Anal Calorim. 2016;126(2):995–1005.CrossRefGoogle Scholar
  37. 37.
    Wang MY, Zhao R, Qing S, Liu YQ, Zhang AM. Study on combustion characteristics of young lignite in mixed O2/CO2 atmosphere. Appl Therm Eng. 2017;110:1240–6.CrossRefGoogle Scholar
  38. 38.
    Moon C, Sung Y, Ahn S, Kim T, Choi G, Kim D. Thermochemical and combustion behaviors of coals of different ranks and their blends for pulverized-coal combustion. Appl Therm Eng. 2013;54(1):111–9.CrossRefGoogle Scholar
  39. 39.
    Chao JN, Yang HR, Wu YX, Zhang H, Lv JF, Dong WG, et al. The investigation of the coal ignition temperature and ignition characteristics in an oxygen-enriched FBR. Fuel. 2016;183:351–8.CrossRefGoogle Scholar
  40. 40.
    Yan L, He B, Hao T, Pei X, Li X, Wang C, et al. Thermogravimetric study on the pressurized hydropyrolysis kinetics of a lignite coal. Int J Hydrogen Energy. 2014;39(15):7826–33.CrossRefGoogle Scholar
  41. 41.
    Li XG, Lv Y, Ma BG, Jian SW, Tan HB. Thermogravimetric investigation on co-combustion characteristics of tobacco residue and high-ash anthracite coal. Biores Technol. 2011;102(20):9783–7.CrossRefGoogle Scholar
  42. 42.
    Liu Z, Quek A, Kent Hoekman S, Srinivasan MP, Balasubramanian R. Thermogravimetric investigation of hydrochar-lignite co-combustion. Biores Technol. 2012;123(Supplement C):646–52.CrossRefGoogle Scholar
  43. 43.
    Niu S, Chen M, Li Y, Xue F. Evaluation on the oxy-fuel combustion behavior of dried sewage sludge. Fuel. 2016;178(Supplement C):129–38.CrossRefGoogle Scholar
  44. 44.
    Cai JM, Wu WX, Liu RH. An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass. Renew Sustain Energy Rev. 2014;36:236–46.CrossRefGoogle Scholar
  45. 45.
    Yuan Y, Li S, Zhao F, Yao Q, Long MB. Characterization on hetero-homogeneous ignition of pulverized coal particle streams using CH∗ chemiluminescence and 3 color pyrometry. Fuel. 2016;184(Supplement C):1000–6.CrossRefGoogle Scholar
  46. 46.
    Deng J, Li QW, Xiao Y, Wen H. The effect of oxygen concentration on the non-isothermal combustion of coal. Thermochim Acta. 2017;653:106–15.CrossRefGoogle Scholar
  47. 47.
    Wang C, Zhang X, Liu Y, Che D. Pyrolysis and combustion characteristics of coals in oxyfuel combustion. Appl Energy. 2012;97:264–73.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power EngineeringTsinghua UniversityBeijingPeople’s Republic of China
  2. 2.Tsinghua University-University of Waterloo Joint Research Center for Micro/Nano Energy & Environment TechnologyTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations