Journal of Thermal Analysis and Calorimetry

, Volume 133, Issue 3, pp 1429–1437 | Cite as

Thermogravimetric analysis–mass spectrometry (TGA–MS) of hydromagnesite from Dujiali Lake in Tibet, China

  • Yongjie Lin
  • Mianping Zheng
  • Chuanyong Ye
  • Ian M. Power


Thermogravimetric analysis–mass spectrometry, in situ X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy were used to characterize hydromagnesite [Mg5(CO3)4(OH)2·4H2O] from Dujiali Lake in Tibet, China. This study describes the variations in the thermal decomposition mechanisms of hydromagnesite at varying heating rates and under either helium (He) or carbon dioxide (CO2) atmospheres. In a He atmosphere, only two decomposition stages were observed; the loss of the crystalline water followed by the combined dehydroxylation and decarbonation. However, under a CO2 atmosphere, the dehydroxylation and decarbonation occur separately as the inert CO2 gas prevents the decomposition of the MgCO3 component of hydromagnesite. Overall, the thermal decomposition is an endothermic process. A distinctly exothermic process occurs at about 540 °C under conditions of high partial pressure of CO2 or high heating rate and implies the crystallization of magnesite (MgCO3). We propose that the release of H2O and CO2 at different stages likely results from the complicated hydrogen bonds and different carbonate groups in the crystal structure of hydromagnesite.


Hydromagnesite TGA–MS Thermal decomposition In situ XRD FT-IR 



The authors would like to thank Dr. Hongde Xia and Dr. Kai Wei of the Institute of Engineering, Thermophysics, Chinese Academy of Sciences for experimental support on thermogravimetric analysis/mass spectrometry measurements, and Dr. Zhenfei Lv of the China University of Geoscience for his help with the Fourier transform infrared spectroscopy. This research was supported by The National Key Research and Development Program of China (Grant Number: 2017YFC0602704), National Natural Science Foundation of China (Grant Numbers: 41473061, 41603048 and U1407207) and China Geological Survey (Grant Number: DD20160025).


  1. 1.
    Power IM, Wilson SA, Harrison AL, Dipple GM, Mccutcheon J, Southam G, et al. A depositional model for hydromagnesite–magnesite playas near Atlin, British Columbia, Canada. Sedimentology. 2014;61:1701–33.CrossRefGoogle Scholar
  2. 2.
    Power IM, Wilson SA, Thom JM, Dipple GM, Gabites JE, Southam G. The hydromagnesite playas of Atlin, British Columbia, Canada: a biogeochemical model for CO2 sequestration. Chem Geol. 2009;260:302–16.CrossRefGoogle Scholar
  3. 3.
    Lin Y, Zheng M, Ye C. Hydromagnesite precipitation in the Alkaline Lake Dujiali, central Qinghai-Tibetan Plateau: constraints on hydromagnesite precipitation from hydrochemistry and stable isotopes. Appl Geochem. 2017;78:139–48.CrossRefGoogle Scholar
  4. 4.
    Botha A, Strydom CA. Preparation of a magnesium hydroxy carbonate from magnesium hydroxide. Hydrometallurgy. 2001;62:175–83.CrossRefGoogle Scholar
  5. 5.
    Beck CW. Differential thermal analysis curves of carbonate materials. Am Miner. 1950;35:985–1013.Google Scholar
  6. 6.
    Sawada Y, Uematsu K, Mizutani N, Kato M. Thermal decomposition of hydromagnesite 4MgCO3—Mg(OH)2–4H2O under different partial pressures of carbon dioxide. Thermochim Acta. 1978;27:45–59.CrossRefGoogle Scholar
  7. 7.
    Sawada Y, Yamaguchi J, Sakurai O, Uematsu K, Mizutani N, Kato M. Thermal decomposition of basic magnesium carbonates under high-pressure gas atmospheres. Thermochim Acta. 1979;32:277–91.CrossRefGoogle Scholar
  8. 8.
    Sawada Y, Yamaguchi J, Sakurai O, Uematsu K, Mizutani N, Kato M. Isothermal differential scanning calorimetry on an exothermic phenomenon during thermal decomposition of hydromagnesite 4MgCO3—Mg(OH)2–4H2O. Thermochim Acta. 1979;34:233–7.CrossRefGoogle Scholar
  9. 9.
    Teir S, Eloneva S, Fogelholm CJ, Zevenhoven R. Fixation of carbon dioxide by producing hydromagnesite from serpentinite. Appl Energy. 2009;86:214–8.CrossRefGoogle Scholar
  10. 10.
    Botha A, Strydom CA. DTA and FT-IR analysis of the rehydration of basic magnesium carbonate. J Thermal Anal Calorim. 2003;71:987–95.CrossRefGoogle Scholar
  11. 11.
    Padeste C, Oswald HR, Reller A. The thermal behaviour of pure and nickel-doped hydromagnesite in different atmospheres. Mater Res Bull. 1991;26:1263–8.CrossRefGoogle Scholar
  12. 12.
    Choudhary VR, Pataskar SG, Gunjikar VG, Zope GB. Influence of preparation conditions of basic magnesium carbonate on its thermal analysis. Thermochim Acta. 1994;232:95–110.CrossRefGoogle Scholar
  13. 13.
    Hull TR, Witkowski A, Hollingbery L. Fire retardant action of mineral fillers. Polym Degrad Stab. 2011;96:1462–9.CrossRefGoogle Scholar
  14. 14.
    Vágvölgyi V, Frost RL, Hales M, Locke A, Kristóf J, Horváth E. Controlled rate thermal analysis of hydromagnesite. J Thermal Anal Calorim. 2008;92:893–7.CrossRefGoogle Scholar
  15. 15.
    Haurie L, Fernandez AI, Velasco JI, Chimenos JM, Lopez-Cuesta JM, Espiell F. Effects of milling on the thermal stability of synthetic hydromagnesite. Mater Res Bull. 2007;42:1010–8.CrossRefGoogle Scholar
  16. 16.
    Khan N, Dollimore D, Alexander K, Wilburn FW. The origin of the exothermic peak in the thermal decomposition of basic magnesium carbonate. Thermochim Acta. 2001;367–368:321–33.CrossRefGoogle Scholar
  17. 17.
    Rao TR, Cholan VS. Kinetics of thermal decomposition of hydromagnesite. Chem Eng Technol. 2004;18(5):359–363.  CrossRefGoogle Scholar
  18. 18.
    Sawada Y, Uematsu K, Mizutani N, Kato M. Thermal decomposition of hydromagnesite 4MgCO3·Mg(OH)2·4H2O. J Inorg Nucl Chem. 1978;40:979–82.CrossRefGoogle Scholar
  19. 19.
    Hollingbery LA, Hull TR. The fire retardant effects of huntite in natural mixtures with hydromagnesite. Polym Degrad Stab. 2012;97:504–12.CrossRefGoogle Scholar
  20. 20.
    Hollingbery LA, Hull TR. The fire retardant behaviour of huntite and hydromagnesite—a review. Polym Degrad Stab. 2010;95(12):2213–2225.CrossRefGoogle Scholar
  21. 21.
    Realinho V, Haurie L, Antunes M, Velasco JI. Thermal stability and fire behaviour of flame retardant high density rigid foams based on hydromagnesite-filled polypropylene composites. Compos B Eng. 2014;58:553–8.CrossRefGoogle Scholar
  22. 22.
    Laoutid F, Gaudon P, Taulemesse JM, Lopez Cuesta JM, Velasco JI, Piechaczyk A. Study of hydromagnesite and magnesium hydroxide based fire retardant systems for ethylene–vinyl acetate containing organo-modified montmorillonite. Polym Degrad Stab. 2006;91:3074–82.CrossRefGoogle Scholar
  23. 23.
    Hollingbery LA, Hull TR. The thermal decomposition of huntite and hydromagnesite—a review. Thermochim Acta. 2010;509:1–11.CrossRefGoogle Scholar
  24. 24.
    Sawada Y, Yamaguchi J, Sakurai O, Uematsu K, Mizutani N, Kato M. Thermogravimetric study on the decomposition of hydromagnesite 4 MgCO3·Mg(OH)2·4H2O. Thermochim Acta. 1979;33:127–40.CrossRefGoogle Scholar
  25. 25.
  26. 26.
    Cheng H, Yang J, Liu Q, He J, Frost RL. Thermogravimetric analysis–massspectrometry(TG–MS) of selected Chinese kaolinites. Thermochim Acta [Internet]. 2010;507–508:106–14.
  27. 27.
    Paulose S, Thomas D, Jayalatha T, Rajeev R, George BK. TG–MS study on the kinetics and mechanism of thermal decomposition of copper ethylamine chromate, a new precursor for copper chromite catalyst. J Therm Anal Calorim. 2016;124:1099–108.CrossRefGoogle Scholar
  28. 28.
    Jayaraman K, Kok MV, Gokalp I. Combustion properties and kinetics of different biomass samples using TG–MS technique. J Therm Anal Calorim. 2017;127:1361–70.CrossRefGoogle Scholar
  29. 29.
    Åkerblom IE, Ojwang DO, Grins J, Svensson G. A thermogravimetric study of thermal dehydration of copper hexacyanoferrate by means of model-free kinetic analysis. J Therm Anal Calorim. 2017;129:721–31.CrossRefGoogle Scholar
  30. 30.
    Ingram AL, Nickels TM, Maraoulaite DK, White RL. Thermogravimetry–mass spectrometry investigations of montmorillonite interlayer water perturbations caused by aromatic acid adsorbates. J Therm Anal Calorim. 2016;126:1157–66.CrossRefGoogle Scholar
  31. 31.
    Xia H, Wei K. Equivalent characteristic spectrum analysis in TG–MS system. Thermochim Acta [Internet]. 2015;602:15–21. Scholar
  32. 32.
    Akao M, Marumo F, Iwai S. The crystal structure of hydromagnesite. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem [Internet]. 1974;30:2670–2.
  33. 33.
    Akao M, Iwai S. The hydrogen bonding of hydromagnesite. Acta Crystallogr Sect B [Internet]. 1977;33:1273–5.
  34. 34.
    Janet CM, Viswanathan B, Viswanath RP, Varadarajan TK. Characterization and photoluminescence properties of MgO microtubes synthesized from hydromagnesite flowers. J Phys Chem C. 2007;111:10267–72.CrossRefGoogle Scholar
  35. 35.
    Wang J, Li D, Gao R, Liu Q, Jing X, Wang Y, et al. Construction of superhydrophobic hydromagnesite films on the Mg alloy. Mater Chem Phys [Internet]. 2011;129:154–60. Scholar
  36. 36.
    Zhang Z, Zheng Y, Ni Y, Liu Z, Chen J, Liang X. Temperature- and pH-dependent morphology and FT-IR analysis of magnesium carbonate hydrates. J Phys Chem B. 2006;110:12969–73.CrossRefGoogle Scholar
  37. 37.
    Gil Kim S, Hyun Choi K, Hwan Eun J, Joon Kim H, Seung Hwang C. Effects of additives on properties of MgO thin films by electrostatic spray deposition. Thin Solid Films. 2000;377–378:694–8.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Institute of Mineral ResourcesChinese Academy of Geological SciencesBeijingChina
  2. 2.School of Earth Sciences and ResourcesChina University of GeosciencesBeijingChina
  3. 3.Trent School of the EnvironmentTrent UniversityPeterboroughCanada

Personalised recommendations