Journal of Thermal Analysis and Calorimetry

, Volume 133, Issue 3, pp 1491–1498 | Cite as

Heat-moisture treatment (HMT) on blends from potato starch (PS) and sweet potato starch (SPS)

  • Cristina Soltovski de Oliveira
  • Camila Delinski Bet
  • Radla Zabian Bassetto Bisinella
  • Lucas Henrique Waiga
  • Tiago André Denck Colman
  • Egon Schnitzler


Samples of potato starch (PS), sweet potato starch (SPS) and their binary mixtures, with moisture levels of 10, 15 and 20% (db), were submitted to hydrothermal treatment (HMT) for 1 h in a 1:1 ratio (m/m). Samples’ properties, from both native and modified starches, were analysed and compared with the aid of a one-way analysis of variance (ANOVA), with α = 0.05. Thermal analysis shows an increase in thermal stability, illustrated by TG/DTG curves, gradually with the increase in the humidity of the HMT. In counterpart, the DSC curves showed a significant decrease in the enthalpy of the endothermic peak, associated with the gelatinisation, after the HMT, ranging, on average, from 12.0 to 4.0 J g−1, in addition to a lower onset temperature (To). The morphology of the samples was observed using atomic force microscopy, showing agglutination of the granules, decrease in the average size and increase in the roughness after HMT (300–550 nm), except in PS samples, in which the granule surface was smoother after treatment (1000–600 nm). The relative crystallinity (RC) of samples decreased after HMT, proportionally to the amount of moisture used. In the case of the mixtures, the RC was, approximately, the average between the respective PS and SPS samples. Further studies are needed to elucidate the existence of interaction in the properties of mixtures of PS and SPS.


Physical modification Binary mixtures Starch Thermal analysis 



The authors would like to thank the Brazilian organization CAPES and CNPq (Proc. No 307983/2014-5) for the financial support and also to thank C-LABMU (UEPG) for helping in the analysis.


  1. 1.
    Zhang B, Li X, Xiec Q, Tao H, Wang W, Chen H. Preparation and characterization of non-crystalline granular starch and corresponding carboxymethyl starch. Int J Biol Macromol. 2017;103:656–62.CrossRefGoogle Scholar
  2. 2.
    Soykeabkaew N, Thanomsilp C, Suwantong O. A review: starch-based composite foams. Compos A Appl Sci Manuf. 2015;78:246–63.CrossRefGoogle Scholar
  3. 3.
    Castanha N, Matta Junior M, Augusto P. Potato starch modification using the ozone technology. Food Hydrocoll. 2017;66:343–56.CrossRefGoogle Scholar
  4. 4.
    Zhang Y, Gu Z, Hong Y, Li Z, Cheng L. Pasting and rheologic properties of potato starch and maize starch mixtures. Starch–Stärke. 2011;63:11–6.CrossRefGoogle Scholar
  5. 5.
    Park Y, Kim N, Kim Y, Lim T. Pasting properties of potato starch and waxy maize starch mixtures. Starch/Stärke. 2009;61:352–7.CrossRefGoogle Scholar
  6. 6.
    Lee C, Kim Y, Choi J, Moon W. Slowly digestible starch from heat-moisture treated waxy potato starch: preparation, structural characteristics, and glucose response in mice. Food Chem. 2012;133:1222–9.CrossRefGoogle Scholar
  7. 7.
    Zavareze E, Storck C, Castro L, Schirmer M, Dias A. Effect of heat-moisture treatment on rice starch of varying amylose content. Food Chem. 2010;121:358–65.CrossRefGoogle Scholar
  8. 8.
    Puncha-arnon S, Pathipanawat W, Puttanlek C, Rungsardthong V, Uttapap D. Effects of relative granule size and gelatinization temperature on paste and gel properties of starch blends. Food Res Int. 2008;41:552–61.CrossRefGoogle Scholar
  9. 9.
    Yao Y, Zhang J, Ding X. Retrogradation of starch mixtures containing rice starch. J Food Sci. 2003;68:260–5.CrossRefGoogle Scholar
  10. 10.
    Kobmmann J, Muller-Rober B, Riesmeier J, Frommer B, Sonnewald U, Willmitzer L. Transgenic plants as a tool to analyzer carbohydrate metabolism. In: Pontis H, Salermo G, Echeverria E, editors. Sucrose metabolism, biochemistry, physiology and molecular biology, vol. 14. Rockville: American Society of Plant Physiologists; 1995. p. 100–6.Google Scholar
  11. 11.
    Abegunde K, Mu T, Chen J, Deng F. Physicochemical characterization of sweet potato starches popularly used in Chinese starch industry. Food Hydrocoll. 2013;33:169–77.CrossRefGoogle Scholar
  12. 12.
    Zhou D, Zhang B, Chen B, Chen H. Effects of oligosaccharides on pasting, thermal and rheological properties of sweet potato starch. Food Chem. 2017;230:516–23.CrossRefGoogle Scholar
  13. 13.
    Bet CD, Cordoba Prado LP, Ribeiro LS, Schnitzler E. Common vetch (Vicia sativa) as a new starch source: its thermal, rheological and structural properties after acid hydrolysis. Food Biophys. 2016;11:275–82.CrossRefGoogle Scholar
  14. 14.
    Andrade MM, Oliveira CS, Colman TAD, Costa FJOG, Schnitzler E. Effects of heat-moisture treatment on organic cassava starch. J Therm Anal Calorim. 2015;115:2115–22.CrossRefGoogle Scholar
  15. 15.
    Colman TAD, Demiate IM, Schnitzler E. The effect of microwave radiation on some thermal, rheological and structural properties of cassava starch. J Therm Anal Calorim. 2014;115:2245–52.CrossRefGoogle Scholar
  16. 16.
    Kubiaki FT, Figueroa AM, Oliveira CS, Demiate IM, Schnitzler E, Lacerda LG. Effect of acid–alcoholic treatment on the thermal, structural and pasting characteristics of European chestnut (Castanea sativa, Mill) starch. J Therm Anal Calorim. 2018;131:587–94.CrossRefGoogle Scholar
  17. 17.
    Lacerda LG, Filho MASC, Demiate IM, Colman TAD, Andrade MM, Schnitzler E. The effects of heat-moisture treatment on avocado starch granules. J Therm Anal Calorim. 2015;120:387–93.CrossRefGoogle Scholar
  18. 18.
    Alberton C, Colman TAD, Souza J, Oliveira CS, Andrade MM, Schnitzler E. Thermal analysis, rheology, X-ray diffractometry and atomic force microscopy in the evaluation of binary mixtures of “starch-hydrocolloids”. J Microbiol Biotechnol Food Sci. 2014;3:305–9.Google Scholar
  19. 19.
    Park E, Ma J, Kim J, Lee D, Kim S, Kwon D, Kim J. Effect of dual modification of HMT and crosslinking on physicochemical properties and digestibility of waxy maize starch. Food Hydrocoll. 2018;75:33–40.CrossRefGoogle Scholar
  20. 20.
    Bartz J, Zavareze E, Dias ARG. Study of heat–moisture treatment of potato starch granules by chemical surface gelatinization. J Sci Food Agric. 2017;97:3114–23.CrossRefGoogle Scholar
  21. 21.
    Noda T, Fujikami S, Miura H, Fukushima M, Tanigawa S, Endo C, Kim S, Hashimoto N, Yamauchi H. Effect of potato starch characteristics on the textural properties of Korean-style cold noodles made from wheat flour and potato starch blends. Food Sci Technol Res. 2006;14:278–83.CrossRefGoogle Scholar
  22. 22.
    Zhou H, Wang C, Shi L, Chang T, Yang H, Cui M. Effects of salts on physicochemical, microstructural and thermal properties of potato starch. Food Chem. 2014;168:37–43.Google Scholar
  23. 23.
    Waterschoot J, Gomand S, Delcour J, Goderis B. Direct evidence for the non-additive gelatinization in binary starch blends: a case study on potato starch mixed with rice or maize starches. Food Hydrocoll. 2015;50:137–44.CrossRefGoogle Scholar
  24. 24.
    Zhu F, Yang X, Cai Y, Bertoft E, Corke H. Physicochemical properties of sweet potato starch. Starch/Stärke. 2011;63:249–59.CrossRefGoogle Scholar
  25. 25.
    Deng F, Mu T, Zhang M, Abegunde O. Composition, structure, and physicochemical properties of sweet potato starches isolated by sour liquid processing and centrifugation. Starch/Stärke. 2013;65:162–71.CrossRefGoogle Scholar
  26. 26.
    Lu Z, Donner E, Yada R, Liu Q. Impact of γ-irradiation, CIPC treatment, and storage conditions on physicochemical and nutritional properties of potato starches. Food Chem. 2012;133:1188–95.CrossRefGoogle Scholar
  27. 27.
    Varatharajan V, Hoover R, Liu Q, Seetharaman K. The impact of heat-moisture treatment on the molecular structure and physicochemical properties of normal and waxy potato starches. Carbohydr Polym. 2010;81:466–75.CrossRefGoogle Scholar
  28. 28.
    Huang T, Zhou D, Jin Z, Xu X, Chen H. Effect of debranching and heat-moisture treatments on structural characteristics and digestibility of sweet potato starch. Food Chem. 2015;187:218–24.CrossRefGoogle Scholar
  29. 29.
    Gunaratne A, Hoover R. Effect of heat–moisture treatment on the structure and physicochemical properties of tuber and root starches. Carbohydr Polym. 2002;49:425–37.CrossRefGoogle Scholar
  30. 30.
    Zaidul I, Absar N, Kim SJ, Suzuki T, Karim AA, Yamauchi H, Noda T. DSC study of mixtures of wheat flour and potato, sweet potato, cassava, and yam starches. J Food Eng. 2008;86:68–73.CrossRefGoogle Scholar
  31. 31.
    Li Y, Liu S, Liu X, Tang X. The impact of heat-moisture treatment on physicochemical properties and retrogradation behavior of sweet potato starch. Int J Food Eng. 2017;13:1556–3758.Google Scholar
  32. 32.
    Trung PTB, Ngoc LBB, Hoa PN, Tien NNT, Van Hung P. Impact of heat-moisture and annealing treatments on physicochemical properties and digestibility of starches from different colored sweet potato varieties. Int J Biol Macromol. 2017;105:1071–8.CrossRefGoogle Scholar
  33. 33.
    Sun Q, Han Z, Li W, Xiong L. Physicochemical differences between sorghum starch and sorghum flour modified by heat-moisture treatment. Food Chem. 2014;145:756–64.CrossRefGoogle Scholar
  34. 34.
    Li S, Ward R, Gao Q. Effect of heat-moisture treatment on the formation and physicochemical properties of resistant starch from mung bean (Phaseolus radiatus) starch. Food Hydrocoll. 2011;25:1702–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Cristina Soltovski de Oliveira
    • 1
  • Camila Delinski Bet
    • 1
  • Radla Zabian Bassetto Bisinella
    • 1
  • Lucas Henrique Waiga
    • 1
  • Tiago André Denck Colman
    • 2
  • Egon Schnitzler
    • 1
  1. 1.State University of Ponta GrossaPonta GrossaBrazil
  2. 2.Federal University of Grande DouradosDouradosBrazil

Personalised recommendations