Skip to main content
Log in

One-step synthesis of CuS-decorated MWCNTs/paraffin composite phase change materials and their light–heat conversion performance

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Paraffin wax (PW) is a solid–liquid organic phase change material (PCM). However, the low thermal conductivity and poor light–heat conversion performance limit its feasibility in solar thermal storage applications. In this paper, CuS-decorated carboxyl multi-wall carbon nanotubes (MWCNTs)/PW light–heat conversion composite PCMs were prepared by one step. The structure and properties of the composite PCMs were studied by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, differential scanning calorimeter, thermogravimetric analysis, coefficient of thermal conductivity, UV–visible–near infrared spectrometer and light–heat conversion testing. The results showed that the light–heat conversion performance of CuS–MWCNTs/PW composite PCMs were better than that of MWCNT/PW composite PCMs with the same mass fraction. Therefore, it is expected that this research will open up new avenues of study for the creation of advanced composite PCM with excellent light–heat conversion performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Harikrishnan S, Deenadhayalan M, Kalaiselvam S. Experimental investigation of solidification and melting characteristics of composite PCMs for building heating application. Energy Convers Manag. 2014;86(5):864–72.

    Article  CAS  Google Scholar 

  2. Beemkumar N, Karthikeyan A. Experimental analysis of heat transfer characteristics of solar energy based latent heat storage system. Mater Today Proc. 2016;3(6):2475–82.

    Article  Google Scholar 

  3. Fang X, Fan LW, Ding Q, Yao XL, Wu YY, Hou JF, Wang X, Yu ZT, Cheng GH, Hu YC. Thermal energy storage performance of paraffin-based composite phase change materials filled with hexagonal boron nitride nanosheets. Energy Convers Manag. 2014;80(4):103–9.

    Article  CAS  Google Scholar 

  4. Navarro L, Gracia AD, Colclough S, Browne M, Mccormack SJ, Griffths P, Cabeza LF. Thermal energy storage in building integrated thermal systems: a review. Part 1. Active storage systems. Renew Energy. 2016;88:526–47.

    Article  Google Scholar 

  5. Mohamed SA, Al-Sulaiman FA, Ibrahim NI, Zahir MH, Al-Ahmed A, Saidur R, Yilbas BS, Sahin AZ. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems. Renew Sustain Energy Rev. 2017;70:1072–89.

    Article  CAS  Google Scholar 

  6. Xu B, Li Z. Performance of novel thermal energy storage engineered cementitious composites incorporating a paraffin/diatomite composite phase change material. Appl Energy. 2014;121(5):114–22.

    Article  CAS  Google Scholar 

  7. Xiao X, Zhang P, Li M. Preparation and thermal characterization of paraffin/metal foam composite phase change material. Appl Energy. 2013;112(4):1357–66.

    Article  CAS  Google Scholar 

  8. Zhang N, Yuan YP, Yuan YG, Cao XL, Yang XJ. Effect of carbon nanotubes on the thermal behavior of palmitic–stearic acid eutectic mixtures as phase change materials for energy storage. Sol Energy. 2014;110:64–70.

    Article  CAS  Google Scholar 

  9. Zhang P, Ma F, Xiao X. Thermal energy storage and retrieval characteristics of a molten-salt latent heat thermal energy storage system. Appl Energy. 2016;173:255–71.

    Article  CAS  Google Scholar 

  10. Yuan YP, Cao XL, Xiang B, Du YN. Effect of installation angle of fins on melting characteristics of annular unit for latent heat thermal energy storage. Sol Energy. 2016;136:365–78.

    Article  CAS  Google Scholar 

  11. Sharma RK, Ganesan P, Tyagi VV, Metselaar HSC, Sandaran SC. Developments in organic solid–liquid phase change materials and their applications in thermal energy storage. Energy Convers Manag. 2015;95:193–228.

    Article  CAS  Google Scholar 

  12. Liu CZ, Rao ZH, Zhao JT, Huo YT, Li YM. Review on nanoencapsulated phase change materials: preparation, characterization and heat transfer enhancement. Nano Energy. 2015;13:814–26.

    Article  CAS  Google Scholar 

  13. Mehrali M, Latibari ST, Mehrali M, Metselaar HSC, Silakhori M. Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide composite. Energy Convers Manag. 2013;67(3):275–82.

    Article  CAS  Google Scholar 

  14. Xu B, Li PW, Chan C. Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments. Appl Energy. 2015;160:286–307.

    Article  Google Scholar 

  15. Fan LW, Fang X, Wang X, Zeng Y, Xiao YQ, Yu ZT, Xu X, Hu YC, Cen KF. Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials. Appl Energy. 2013;110(5):163–72.

    Article  CAS  Google Scholar 

  16. Sun ZM, Zhang YZ, Zheng SL, Park Y, Forst RL. Preparation and thermal energy storage properties of paraffin/calcined diatomite composites as form-stable phase change materials. Thermochim Acta. 2013;558(8):16–21.

    Article  CAS  Google Scholar 

  17. Veerakumar C, Sreekumar A. Phase change material based cold thermal energy storage: materials, techniques and applications—a review. Int J Refrig. 2016;67:271–89.

    Article  Google Scholar 

  18. Silva T, Vicente R, Rodrigues F. Literature review on the use of phase change materials in glazing and shading solutions. Renew Sustain Energy Rev. 2016;53:515–35.

    Article  Google Scholar 

  19. Giro-Paloma J, Martínez M, Cabeza LF, Inés Fernández A. Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): a review. Renew Sustain Energy Rev. 2016;53:1059–75.

    Article  CAS  Google Scholar 

  20. Kousksou T, Bruel P, Jamil A, Rhafiki TE, Zeraouli Y. Energy storage: applications and challenges. Sol Energy Mater Sol Cells. 2014;120(1):59–80.

    Article  CAS  Google Scholar 

  21. Yang D, Shi SL, Xiong L, Gui HJ, Zhang HR, Chen XF, Wang C, Chen XD. Paraffin/palygorskite composite phase change materials for thermal energy storage. Sol Energy Mater Sol Cells. 2016;144:228–34.

    Article  CAS  Google Scholar 

  22. Zhang P, Xiao X, Ma ZW. A review of the composite phase change materials: fabrication, characterization, mathematical modeling and application to performance enhancement. Appl Energy. 2016;165:472–510.

    Article  CAS  Google Scholar 

  23. Li M, Chen MR, Wu ZS, Liu JX. Carbon nanotube grafted with polyalcohol and its influence on the thermal conductivity of phase change material. Energy Convers Manag. 2014;83(7):325–9.

    Article  CAS  Google Scholar 

  24. Li Z, Sun WG, Wang G, Wu ZG. Experimental and numerical study on the effective thermal conductivity of paraffin/expanded graphite composite. Sol Energy Mater Sol Cells. 2014;128(9):447–55.

    Article  CAS  Google Scholar 

  25. Guan WM, Li JH, Qian TT, Wang X, Deng Y. Preparation of paraffin/expanded vermiculite with enhanced thermal conductivity by implanting network carbon in vermiculite layers. Chem Eng J. 2015;277:56–63.

    Article  CAS  Google Scholar 

  26. Tang QQ, Sun J, Yu SM, Wang GC. Improving thermal conductivity and decreasing supercooling of paraffin phase change materials by n-octadecylamine-functionalized multi-walled carbon nanotubes. Rsc Adv. 2014;4(69):36584–90.

    Article  CAS  Google Scholar 

  27. Li YL, Li JH, Deng Y, Guan WM, Wang X, Qian TT. Preparation of paraffin/porous TiO2, foams with enhanced thermal conductivity as PCM, by covering the TiO2, surface with a carbon layer. Appl Energy. 2016;171:37–45.

    Article  CAS  Google Scholar 

  28. Zhang Q, Wang HC, Ling ZY, Fang XM, Zhang ZG. RT100/expand graphite composite phase change material with excellent structure stability, photo-thermal performance and good thermal reliability. Sol Energy Mater Sol Cells. 2015;140:158–66.

    Article  CAS  Google Scholar 

  29. Wu SY, Tong X, Nie CD, Peng QD, Gong GS, Wang ZQ. The effects of various carbon nanofillers on the thermal properties of paraffin for energy storage applications. J Therm Anal Calorim. 2016;124(1):181–8.

    Article  CAS  Google Scholar 

  30. Kibria MA, Anisur MR, Mahfuz MH, Saidur R, Metselaar IHSC. A review on thermophysical properties of nanoparticle dispersed phase change materials. Energy Convers Manag. 2015;95:69–89.

    Article  CAS  Google Scholar 

  31. Abbasi S, Zebarjad SM, Baghban SHN, et al. Thermal conductivity of water based nanofluids containing decorated multi walled carbon nanotubes with different amount of TiO2 nanoparticles. Iran J Chem Eng. 2015;12(1):30–41.

    Google Scholar 

  32. Jha N, Ramaprabhu S. Thermal conductivity studies of metal dispersed multiwalled carbon nanotubes in water and ethylene glycol based nanofluids. J Appl Phys. 2009;106(8):1841.

    Article  CAS  Google Scholar 

  33. Roy P, Srivastava SK. Nanostructured copper sulfides: synthesis, properties and applications. CrystEngComm. 2015;17(41):7801–15.

    Article  CAS  Google Scholar 

  34. Tian QW, Jiang FR, Zou RJ, Liu Q, Chen ZG, Zhu MF, Yang SP, Wang JL, Wang JH, Hu JQ. Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. ACS Nano. 2011;5(12):9761.

    Article  CAS  PubMed  Google Scholar 

  35. Li XJ, Li YN, Xie F, Li W, Li WJ, Chen MF, Zhao Y. Preparation of monodispersed CuS nanocrystals in an oleic acid/paraffin system. Rsc Adv. 2015;5(103):84465–70.

    Article  CAS  Google Scholar 

  36. Wang XX, Lu MM, Cao WQ, Wen B, Cao MS. Fabrication, microstructure and microwave absorption of multi-walled carbon nanotube decorated with CdS nanocrystal. Mater Lett. 2014;125(24):107–10.

    Article  CAS  Google Scholar 

  37. Banerjee S, Wong SS. In situ quantum dot growth on multiwalled carbon nanotubes. J Am Chem Soc. 2003;125(34):10342–50.

    Article  CAS  PubMed  Google Scholar 

  38. Kang XH, Wang B, Zhu L, Zhu H. Synthesis and tribological property study of oleic acid-modified copper sulfide nanoparticles. Wear. 2008;265(1):150–4.

    Article  CAS  Google Scholar 

  39. Deng ZT, Cao L, Tang FQ, Zou BS. A new route to zinc-blende CdSe nanocrystals: mechanism and synthesis. J Phys Chem B. 2005;109(35):16671–5.

    Article  CAS  PubMed  Google Scholar 

  40. Chen P, Gao XN, Wang YQ, Xu T, Fang YT, Zhan ZG. Metal foam embedded in SEBS/paraffin/HDPE form-stable PCMs for thermal energy storage. Sol Energy Mater Sol Cells. 2016;149:60–5.

    Article  CAS  Google Scholar 

  41. Sari A, Karaipekli A. Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage. Sol Energy Mater Sol Cells. 2009;93(5):571–6.

    Article  CAS  Google Scholar 

  42. Zhang XG, Wen RL, Huang ZH, Tang C, Huang YT, Liu YG, Fang MH, Wu XW, Min X, Xu YG. Enhancement of thermal conductivity by the introduction of carbon nanotubes as a filler in paraffin/expanded perlite form-stable phase-change materials. Energy Build. 2017;149:463–70.

    Article  Google Scholar 

  43. Xiang J, Drzal LT. Investigation of exfoliated graphite nanoplatelets (x GnP) in improving thermal conductivity of paraffin wax-based phase change material. Sol Energy Mater Sol Cells. 2011;95(7):1811–8.

    Article  CAS  Google Scholar 

  44. Xu B, Li ZJ. Paraffin/diatomite/multi-wall carbon nanotubes composite phase change material tailor-made for thermal energy storage cement-based composites. Energy. 2014;72(7):371–80.

    Article  CAS  Google Scholar 

  45. Wang JF, Xie HQ, Xin Z. Thermal properties of paraffin based composites containing multi-walled carbon nanotubes. Thermochim Acta. 2009;488(1):39–42.

    Article  CAS  Google Scholar 

  46. Wang JF, Xie HQ, Xin Z, Li Y, Chen LF. Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers. Sol Energy. 2010;84(2):339–44.

    Article  CAS  Google Scholar 

  47. Xu B, Wang BY, Zhang CX, Zhou J. Synthesis and light–heat conversion performance of hybrid particles decorated MWCNTs/paraffin phase change materials. Thermochim Acta. 2017;652:77–84.

    Article  CAS  Google Scholar 

  48. Warzoha RJ, Fleischer AS. Improved heat recovery from paraffin-based phase change materials due to the presence of percolating graphene networks. Int J Heat Mass Transf. 2014;79:314–23.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51775510), the Planning Project of Application Research for Public Service Technology of Zhejiang Province (LGG18E060002) and the Key Research and Development Project of Yiwu (2017-Z-09).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Congda Lu or Zhongjin Ni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, B., Zhang, C., Chen, C. et al. One-step synthesis of CuS-decorated MWCNTs/paraffin composite phase change materials and their light–heat conversion performance. J Therm Anal Calorim 133, 1417–1428 (2018). https://doi.org/10.1007/s10973-018-7192-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7192-0

Keywords

Navigation