Journal of Thermal Analysis and Calorimetry

, Volume 133, Issue 3, pp 1627–1633 | Cite as

Investigation on enthalpies of combustion and heat capacities for 2-aminomethylpyridine derivatives

  • Xueying Zhang
  • Yuemiao Lai
  • Xin Yi
  • Min Sun
  • Huiping Hu
  • Shijun Liu


The molar energies of combustion \(\left( {\Delta_{\text{c}} U_{\text{m}} } \right)\) for 2-aminomethylpyridine (AMP), tert-butyl 2-[N-(tert-Y)-2-picolyamino]acetate (AMPY), N,N-dioctyl-2-(aminomethyl)pyridine (AMPO), and tert-butyl 2-(N-octyl-2-picolyamino)acetate (AMPA) were measured by an oxygen bomb calorimeter at 298.15 K, and the results are: − (3585.5 ± 2.4) kJ mol−1, − (10145.0 ± 7.2) kJ mol−1, − (14047.1 ± 18.8) kJ mol−1, − (12141.3 + 12.3) kJ mol−1, respectively. The standard molar enthalpies of combustion \(\left( {\Delta_{\text{c}} H_{\text{m}}^{\varTheta } } \right)\) and standard molar enthalpies of formation \(\left( {\Delta_{\text{f}} H_{\text{m}}^{\varTheta } } \right)\) for these compounds were derived from the experimental results and literature values. The values of \(\Delta_{\text{f}} H_{\text{m}}^{\varTheta }\) for AMP, AMPY, AMPO and AMPA are 88.4 ± 2.5 kJ mol−1, − (930.4 ± 7.6)kJ mol−1, − (304.8 ± 19.0)kJ mol−1 and − (569.9 ± 12.6) kJ mol−1. The heat capacities at constant pressure for these compounds were measured with a DSC over the temperature range from 280 to 323 K, and the relationships between the heat capacity and temperature were obtained from measured results. The melting point and enthalpy of fusion for AMPY were also determined by DSC.


Energies of combustion 2-Aminomethylpyridine derivatives Standard molar enthalpies of combustion Heat capacities at constant pressure 



This work was financially supported by National Basic Research Program of China (2014CB643401) and the National Natural Science Foundation of China (Nos. 51134007 and 51474256).

Supplementary material

10973_2018_7191_MOESM1_ESM.docx (169 kb)
Supplementary material 1 (DOCX 168 kb)


  1. 1.
    Lataye DH, Mishra IM, Mall ID. Pyridine sorption from aqueous solution by rice husk ash (RHA) and granular activated carbon (GAC): parametric, kinetic, equilibrium and thermodynamic aspects. J Hazard Mater. 2008;154(1–3):858–70.CrossRefPubMedGoogle Scholar
  2. 2.
    Morávková L, Wagner Z, Linek J. Volumetric properties of pyridine, 2-picoline, 3-picoline, and 4-picoline at temperatures from (298.15 to 328.15)K and at pressures up to 40 MPa. J Chem Thermodyn. 2010;42(1):65–9.CrossRefGoogle Scholar
  3. 3.
    Movassaghi M, Hill MD, Ahmad OK. Direct synthesis of pyridine derivatives. J Am Chem Soc. 2007;129(33):10096–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Brown BG, Zhao XQ. Nicotinic acid, alone and in combinations, for reduction of cardiovascular risk. J Am Coll Cardiol. 2008;101(8):58B.CrossRefGoogle Scholar
  5. 5.
    Hill MD. Recent strategies for the synthesis of pyridine derivatives. Chem Eur J. 2010;16(40):12052–62.CrossRefPubMedGoogle Scholar
  6. 6.
    Fa SX, Wang XD, Wang QQ, Ao YF, Wang DX, Wang MX. Multiresponsive vesicles composed of amphiphilic azacalix [4] pyridine derivatives. ACS Appl Mater Inter. 2017;9(12):10378–82.CrossRefGoogle Scholar
  7. 7.
    Kenchappa R, Bodke YD, Chandrashekar A, Telkar S, Manjunatha KS, ArunaSindhe M. Synthesis of some 2, 6-bis (1-coumarin-2-yl)-4-(4-substituted phenyl) pyridine derivatives as potent biological agents. Arab J Chem. 2017;10:S1336–44.CrossRefGoogle Scholar
  8. 8.
    Suksrichavalit T, Prachayasittikul S, Nantasenamat C, Isarankura-Na-Ayudhya C, Prachayasittikul V. Copper complexes of pyridine derivatives with superoxide scavenging and antimicrobial activities. Eur J Med Chem. 2009;44(8):3259–65.CrossRefPubMedGoogle Scholar
  9. 9.
    Yue YF, Salim NT, Wu YZ, Yang XD, Islam A, Chen W, Liu J, Bi E, Xie FX, Cai M, Han LY. Enhanced stability of perovskite solar cells through corrosion-free pyridine derivatives in hole-transporting materials. Adv Mater. 2016;28(48):10738.CrossRefPubMedGoogle Scholar
  10. 10.
    Klappa JJ, Rich AE, McNeill K. One-step synthesis of 3,5-disubstituted-2-pyridylpyrroles from the condensation of 1,3-diones and 2-(aminomethyl)pyridine. Org Lett. 2002;4(3):435–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Huang ZF, Gao HY, Zhang L, Wu Q. 2-aminomethylpyridine nickel(II) complexes-synthesis, molecular structure and catalysis of ethylene polymerization. Polymer Sci. 2008;26(5):567.Google Scholar
  12. 12.
    Chelucci G, Baldino S, Baratta W. Ruthenium and osmium complexes containing 2-(aminomethyl)pyridine (Ampy)-based ligands in catalysis. Coordin Chem Rev. 2015;300(51):29–85.CrossRefGoogle Scholar
  13. 13.
    Dunstan PO. Thermochemistry of adducts of some bivalent transition metal bromides with pyridine. Thermochim Acta. 2007;456(1):32–7.CrossRefGoogle Scholar
  14. 14.
    du Preez JGH, Shillington DP, Schanknecht SB. The synthesis and functioning of diamine and diammonium extractants. Solvent Extr Ion Exc. 1989;7(5):865–85.CrossRefGoogle Scholar
  15. 15.
    Yang JP, Hu HP, Cheng ZY, Qiu XJ, Wang CX. Structural insights into the coordination and selective extraction of copper(II) by tertiary amine ligands derived from 2-aminomethylpyridine. Polyhedron. 2017;128:76–84.CrossRefGoogle Scholar
  16. 16.
    Cheng ZY, Hu HP, Yang JP, Qiu XJ, Wang CX, Ji GF. Synthesis, structure and DFT calculations of a novel copper (II) complex based on tert-butyl 2-[N-(tert-butyloxycarbonylmethyl)-2-picolyamino] acetate. J Struct Chem. 2017;36(5):795–804.Google Scholar
  17. 17.
    Meija J, Coplen TB, Berglund M. Atomic weights of the elements 1999. Pure Appl Chem. 2016;30(3):683–799.Google Scholar
  18. 18.
    Li WL, Zhou CR, Zhang L. Investigation on specific heat capacity and combustion enthalpy of ivermectin. J Therm Anal Calorim. 2016;124(1):1–7.CrossRefGoogle Scholar
  19. 19.
    Flores H, Camarillo EA, Mentado J. Enthalpies of combustion and formation of 2-acetylpyrrole, 2-acetylfuran and 2-acetylthiophene. Thermochim Acta. 2009;493(1):76–9.CrossRefGoogle Scholar
  20. 20.
    Flores H, Amador P. Standard molar enthalpies of formation of crystalline stereoisomers of aldono-1,4-lactones. J Chem Thermodyn. 2004;36(11):1019–24.CrossRefGoogle Scholar
  21. 21.
    Yu X, Zhou CR, Han XW, Li GP. Study on thermodynamic properties of glyphosate by oxygen-bomb calorimeter and DSC. J Therm Anal Calorim. 2013;111(1):943–9.CrossRefGoogle Scholar
  22. 22.
    Mentado J. Standard molar enthalpy of combustion and formation of enantiomers: (S)-(+)-3,5-Dinitro-N-(1-phenylethyl)benzamide and (R)-(−)-3,5-Dinitro-N-(1-phenylethyl)benzamide. J Chem Thermodyn. 2013;64:134–6.CrossRefGoogle Scholar
  23. 23.
    Camarillo EA, Flores H. Determination of the energies of combustion and enthalpies of formation of nitrobenzenesulfonamides by rotating-bomb combustion calorimetry. J Chem Thermodyn. 2010;42(3):425–8.CrossRefGoogle Scholar
  24. 24.
    Flores H, Mentado J, Amador P, Torres LA, Campos M. Redesigning the rotating-bomb combustion calorimeter. J Chem Thermodyn. 2006;38(6):756–9.CrossRefGoogle Scholar
  25. 25.
    Wang M, Lei H, Zhang J, Hou Z, Seki Y. Molar heat capacities and standard molar enthalpy of formation of pyrimethanil butanedioic salt. J Therm Anal Calorim. 2014;117(3):1335–40.CrossRefGoogle Scholar
  26. 26.
    Liu ZH, Zhang HL. Handbook of Analytical Chemistry. China: Chemical Industry Press; 2016. p. 651.Google Scholar
  27. 27.
    Contineanu I, Chivu L, Perişanu ŞT. The enthalpies of combustion and formation of L -α-glutamic and 6-aminohexanoic acids. J Therm Anal Calorim. 2005;82(1):3–6.CrossRefGoogle Scholar
  28. 28.
    Yu X, Zhou CR, Han XW, Li GP. Study on thermodynamic properties of glyphosate by oxygen-bomb calorimeter and DSC. J Therm Anal Calorim. 2013;111(1):943–9.CrossRefGoogle Scholar
  29. 29.
    Cox JD, Drowart J, Hepler LG, Medvedev VA, Wagman DD. CODATA recommended key values for thermodynamics, 1977 Report of the CODATA Task Group on key values for thermodynamics, 1977. J Chem Thermodyn. 1978;10(10):903–6.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Xueying Zhang
    • 1
  • Yuemiao Lai
    • 1
  • Xin Yi
    • 1
  • Min Sun
    • 1
  • Huiping Hu
    • 1
  • Shijun Liu
    • 1
  1. 1.School of Chemistry and Chemical EngineeringCentral South UniversityChangshaChina

Personalised recommendations