Skip to main content
Log in

Numerical investigation of mixed convection heat transfer of a nanofluid in a circular enclosure with a rotating inner cylinder

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present paper, mixed convection heat transfer of water–Al2O3 nanofluid in the space between two cylinders is investigated numerically. The inner and outer cylinders are at Tc and Th temperatures, respectively. The forced and free convective heat transfers are due to the internal cylinder rotation and temperature difference between the two cylindrical surfaces, respectively. The effect of dimensionless parameters such as Rayleigh and Richardson numbers, the volume fraction of nanofluid, the eccentricity ratio and its angle on heat transfer ratio is analyzed. The governing equations are solved using a finite-difference method and SIMPLE algorithm. The results show that at eccentricity of ε = 0.0 and 0.5 and within the entire range of Rayleigh number 103 ≤ Ra ≤ 105 and Richardson number 0.1 ≤ Ri ≤ 100, an increase in Rayleigh and Richardson numbers leads to an increase in average Nusselt number on the inner cylinder wall. But at eccentricity of ε = 0.9, the average Nusselt number on the inner cylinder wall decreases with these dimensionless parameters. It is found that an increase in the volume fraction of the nanofluid results in an increase in average Nusselt number on the inner cylinder wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

C p :

Specific heat capacity at constant (J Kg−1 K−1)

D :

Cylinder diameter (m)

g :

Gravitational acceleration (m s−2)

Gr :

Grashof number

K :

Heat conductivity coefficient (W m−1 k−1)

L :

Specific length (m)

Nu :

Local Nusselt number

P :

Dimensionless pressure

Pe :

Péclet number

Pr :

Prandtl number

Q :

Heat transfer rate

r :

Radial coordinate

R :

Dimensionless radial coordinate

Ra :

Rayleigh number

Re :

Reynolds number

Ri :

Richardson number

RR :

Radial ratio

T :

Wall temperature (K)

u :

Velocity in radial direction (m s−1)

v :

Velocity in perimeter direction (m s−1)

U :

Dimensionless velocity in radial direction

V :

Dimensionless velocity in perimeter direction

α :

Heat diffusion coefficient (m2 s−1)

β :

Thermal diffusion coefficient (k−1)

ε :

Dimensionless eccentricity

ϕ :

Angular coordinate

φ :

Volume fraction of nanofluid

ν :

Kinematic viscosity (m2 s−1)

μ :

Dynamic viscosity (kg m−1 s−1)

ω :

Angular velocity (rad s−1)

ρ :

Density (kg m−3)

θ :

Dimensionless temperature

References

  1. Barbes B, Paramo R, Blanco E, Pastoriza-Gallege MJ, Pineiro MM, Legido JL, Casanova C. Thermal conductivity and specific heat capacity measurement of Al2O3 nanofluids. J Therm Anal Calorim. 2013;111:1615–25.

    Article  CAS  Google Scholar 

  2. Kumar BR, Basheer NS, Jacon S, Kurian A, George SD. Thermal-lens probing of the enhanced thermal diffusivity of gold nanofluid-ethylene glycol mixture. J Therm Anal Calorim. 2015;119:453–60.

    Article  Google Scholar 

  3. Jbeili M, Wang G, Zhang J. Evaluation of thermal and power performances of nanofluid flows through square in-line cylinder arrays. J Therm Anal Calorim. 2017;129:1923–34.

    Article  CAS  Google Scholar 

  4. Sheikholeslami M, Shamlooei M, Moradi R. Fe3O4-ethylene glycol nanofluid forced convection inside a porous enclosure in existence of Coulomb force. J Mol Liq. 2018;249:429–37.

    Article  CAS  Google Scholar 

  5. Sheikholeslami M. Numerical investigation for CuO–H2O nanofluid flow in a porous channel with magnetic field using mesoscopic method. J Mol Liq. 2018;249:739–46.

    Article  CAS  Google Scholar 

  6. Sheikholeslami M. CuO-water nanofluid flow due to magnetic field inside a porous media considering Brownian motion. J Mol Liq. 2018;249:921–9.

    Article  CAS  Google Scholar 

  7. Sheikholeslami M. Numerical investigation of nanofluid free convection under the influence of electric field in a porous enclosure. J Mol Liq. 2018;249:1212–21.

    Article  CAS  Google Scholar 

  8. Sheikholeslami M, Shehzad SA. Numerical analysis of Fe3O4–H2O nanofluid flow in permeable media under the effect of external magnetic source. Int J Heat Mass Transf. 2018;118:182–92.

    Article  CAS  Google Scholar 

  9. Sheikholeslami M, Rokni HB. Numerical simulation for impact of Coulomb force on nanofluid heat transfer in a porous enclosure in presence of thermal radiation. Int J Heat Mass Transf. 2018;118:823–31.

    Article  CAS  Google Scholar 

  10. Sheikholeslami M, Sadoughi MK. Simulation of CuO-water nanofluid heat transfer enhancement in presence of melting surface. Int J Heat Mass Transf. 2018;116:909–19.

    Article  CAS  Google Scholar 

  11. Sheikholeslami M, Seyednezhad M. Simulation of nanofluid flow and natural convection in a porous media under the influence of electric field using CVFEM. Int J Heat Mass Transf. 2018;120:772–81.

    Article  CAS  Google Scholar 

  12. Deng QH. Fluid flow and heat transfer characteristics of natural convection in square cavities due to discrete source–sink pairs. Int J Heat Mass Transf. 2008;51:5949–57.

    Article  Google Scholar 

  13. Mohamad AA, Kuzmin A. A critical evaluation of force term in lattice Boltzmann method, natural convection problem. Int J Heat Mass Transf. 2010;53:990–6.

    Article  Google Scholar 

  14. Ghaddar NK. Natural convection heat transfer between a uniformly heated cylindrical element and its rectangular enclosure. Int J Heat Mass Transf. 1992;35:2327–34.

    Article  CAS  Google Scholar 

  15. Holzbecher M, Steiff A. Laminar and turbulent free convection in vertical cylinders with internal heat generation. Int J Heat Mass Transf. 1995;38:2893–903.

    Article  CAS  Google Scholar 

  16. Kao PH, Yang RJ. Simulating oscillatory flows in Rayleigh–Benard convection using the lattice Boltzmann method. Int J Heat Mass Transf. 2007;50:3315–28.

    Article  CAS  Google Scholar 

  17. Zeng-Yuan G, Chao-Min Z. Thermal drive in centrifugal fields—mixed convection in a vertical rotating cylinder. Int J Heat Mass Transf. 1992;35:1635–44.

    Article  Google Scholar 

  18. El-Shaarawi MAI, Khamis M. Induced flow in uniformly heated vertical annuli with rotating inner walls. Numer Heat Transf Part A Appl. 1987;12:493–508.

    Google Scholar 

  19. Hessami MA, Davis GDV, Leonardi E, Reizes JA. Mixed convection in vertical, cylindrical annuli. Int J Heat Mass Transf. 1987;30:151–64.

    Article  Google Scholar 

  20. Singh SK, Jha BK, Singh AK. Natural convection in vertical concentric annuli under a radial magnetic field. Heat Mass Transf. 1997;32:399–401.

    Article  CAS  Google Scholar 

  21. Yoo JS. Mixed convection of air between two horizontal concentric cylinders with a cooled rotating outer cylinder. Int J Heat Mass Transf. 1998;41:293–302.

    Article  Google Scholar 

  22. Heyhat MM, Kowsary F, Rashidi AM, Momenpour MH, Amrollahi A. Experimental investigation of laminar convective heat transfer and pressure drop of water-based Al2O3 nanofluids in fully developed flow regime. Exp Therm Fluid Sci. 2013;44:483–9.

    Article  CAS  Google Scholar 

  23. Kayhani MH, Soltanzadeh H, Heyhat MM, Nazari M, Kowsary F. Experimental study of convective heat transfer and pressure drop of TiO2/water nanofluid. Int Commun Heat Mass Transf. 2012;39:456–62.

    Article  CAS  Google Scholar 

  24. Yu ZT, Xu X, Hu YC, Fan LW, Cen KF. A numerical investigation of transient natural convection heat transfer of aqueous nanofluids in a horizontal concentric annulus. Int J Heat Mass Transf. 2012;55:1141–8.

    Article  CAS  Google Scholar 

  25. Matin MH, Khan WA. Laminar natural convection of non-Newtonian power-law fluids between concentric circular cylinders. Int Commun Heat Mass Transf. 2013;43:112–21.

    Article  Google Scholar 

  26. Cianfrini M, Corcione M, Quintino A. Natural convection heat transfer of nanofluids in annular spaces between horizontal concentric cylinders. Appl Therm Eng. 2011;31:4055–63.

    Article  CAS  Google Scholar 

  27. Matin MH, Pop I. Natural convection flow and heat transfer in an eccentric annulus filled by Copper nanofluid. Int J Heat Mass Transf. 2013;61:353–64.

    Article  Google Scholar 

  28. Moghari RM, Akbarinia A, Shariat M, Talebi F, Laur R. Two phase mixed convection Al2O3—water nanofluid flow in an annulus. Int J Multiph Flow. 2011;37:585–95.

    Article  Google Scholar 

  29. Khanafer K, Chamkha AJ. Mixed convection within a porous heat generating horizontal annulus. Int J Heat Mass Transf. 2003;46:1725–35.

    Article  Google Scholar 

  30. Mirmasoumi S, Behzadmehr A. Numerical study of laminar mixed convection of a nanofluid in a horizontal tube using two-phase mixture model. Appl Therm Eng. 2008;28:717–27.

    Article  CAS  Google Scholar 

  31. Abu-Nada E, Masoud Z, Hijazi A. Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids. Int Commun Heat Mass Transf. 2008;35:657–65.

    Article  CAS  Google Scholar 

  32. Arefmanesh A, Amini M, Mahmoodi M, Najafi M. Buoyancy-driven heat transfer analysis in two-square duct annuli filled with a nanofluid. Eur J Mech. 2012;33:95–104.

    Article  Google Scholar 

  33. Teamah MA, El-Maghlany WM. Augmentation of natural convective heat transfer in square cavity by utilizing nanofluids in the presence of magnetic field and uniform heat generation/absorption. Int J Therm Sci. 2012;58:130–42.

    Article  CAS  Google Scholar 

  34. Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20:571–81.

    Article  CAS  Google Scholar 

  35. Sheikholeslami M, Ganji DD. Nanofluid flow and heat transfer between parallel plates considering Brownian motion using DTM. Comput Methods Appl Mech Eng. 2015;283:651–63.

    Article  Google Scholar 

  36. Kuehn TH, Goldstein RJ. An experimental and theoretical study of natural convection in the annulus between horizontal concentric cylinders. J Fluid Mech. 1976;74:695–719.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Shateri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirazi, M., Shateri, A. & Bayareh, M. Numerical investigation of mixed convection heat transfer of a nanofluid in a circular enclosure with a rotating inner cylinder. J Therm Anal Calorim 133, 1061–1073 (2018). https://doi.org/10.1007/s10973-018-7186-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7186-y

Keywords

Navigation