CO2 adsorption and desorption properties of calcined layered double hydroxides

Effect of metal composition on the LDH structure


In this study, the CO2 adsorption properties of different metal mixed oxides (MMO) obtained by calcination of different layered double hydroxides (LDH) are addressed. Four types of LDH, with composition \(\left[{{\text{M}}_ {1 - {\text{x}}}^{2 +} {\text{M}}_{\text{x}}^{3 +} \left({\text{OH}} \right)_{2}} \right]^{{\text{x} +}} \cdot[{\text{A}}_{\text{x/n}}^{{\text{n} -}} \cdot {m}{\text{H}}_{2} {\text{O}}]^{{\text{x} -}},\) where M2+=Zn, Cu, Ni, M3+=Al, x = 0.33, n = 2 and A = CO 2−3 , were studied by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and thermogravimetric analysis coupled with mass spectrometry (TG-MS). Different thermal behaviors upon heating were observed depending on the LDH composition, resulting in the exploitation of different calcination temperatures to convert LDH into mixed metal oxides (MMO). MMO were exposed to ambient air or pure carbon dioxide atmosphere to evaluate CO2 adsorption properties. Aging in ambient condition leads to adsorption of both CO2 and water, from ambient moisture, with variable ratios depending on the MMO composition. Furthermore, all the MMO were demonstrated to be able to adsorb CO2 in pure gas stream, in the absence of moisture. In both ambient and pure CO2 conditions, the performance of MMO is strongly dependent on the metal composition of MMO. In particular, the presence of Cu in the structure turned out to be beneficial in terms of adsorption capacity, with a maximum mass gain for CuAl MMO of 4 and 15% in pure CO2 and in atmospheric conditions, respectively.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    This temperature was selected as the lowest possible temperature for the instrument and is sufficiently close to the ambient temperature.

  2. 2.

    For the detailed description of the method, see Experimental section.


  1. 1.

    Leung DY, Caramanna G, Maroto-Valer MM. An overview of current status of carbon dioxide capture and storage technologies. Renew Sustain Energy Rev. 2014;39:426–43.

    CAS  Article  Google Scholar 

  2. 2.

    Silva JA, Schumann K, Rodrigues AE. Sorption and kinetics of CO2 and CH4 in binderless beads of 13X zeolite. Microporous Mesoporous Mater. 2012;158:219–28.

    CAS  Article  Google Scholar 

  3. 3.

    Wang L, Liu Z, Li P, Yu J, Rodrigues AE. Experimental and modeling investigation on post-combustion carbon dioxide capture using zeolite 13X-APG by hybrid VTSA process. Chem Eng J. 2012;197:151–61.

    CAS  Article  Google Scholar 

  4. 4.

    Cheung O, Liu Q, Bacsik Z, Hedin N. Silicoaluminophosphates as CO2 sorbents. Microporous Mesoporous Mater. 2012;156:90–6.

    CAS  Article  Google Scholar 

  5. 5.

    Yang R, Liu G, Li M, Zhang J, Hao X. Preparation and N2, CO2 and H2 adsorption of super activated carbon derived from biomass source hemp (Cannabis sativa L.) stem. Microporous Mesoporous Mater. 2012;158:108–16.

    CAS  Article  Google Scholar 

  6. 6.

    Vargas DP, Giraldo L, Moreno-Piraján JC. CO2 adsorption on activated carbon honeycomb-monoliths: a comparison of Langmuir and Toth models. Int J Mol Sci. 2012;13(7):8388–97.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Correia LB, Fiuza RA, de Andrade RC, Andrade HM. CO2 capture on activated carbons derived from mango fruit (Mangifera indica L.) seed shells. J Therm Anal Calorim. 2017;131:1–8.

    Google Scholar 

  8. 8.

    Giraldo L, Moreno-Piraján JC. CO2 adsorption on activated carbon prepared from mangosteen peel. J Therm Anal Calorim. 2017.

    Article  Google Scholar 

  9. 9.

    Yu J, Xie L-H, Li J-R, Ma Y, Seminario JM, Balbuena PB. CO2 capture and separations using MOFs: computational and experimental studies. Chem Rev. 2017;117(14):9674–754.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Qi G, Fu L, Choi BH, Giannelis EP. Efficient CO2 sorbents based on silica foam with ultra-large mesopores. Energy Environ Sci. 2012;5(6):7368–75.

    CAS  Article  Google Scholar 

  11. 11.

    Forano C, Hibino T, Leroux F, Taviot-Gueho C. 1 layered double hydroxides. Dev Clay Sci. 2006;1:1021–95.

    CAS  Article  Google Scholar 

  12. 12.

    Hibino T, Yamashita Y, Kosuge K, Tsunashima A. Decarbonation behavior of Mg–Al–CO3 hydrotalcite-like compounds during heat treatment. Clays Clay Miner. 1995;43(4):427–32.

    CAS  Article  Google Scholar 

  13. 13.

    Kloprogge JT, Frost RL. Fourier transform infrared and Raman spectroscopic study of the local structure of Mg-, Ni-, and Co-hydrotalcites. J Solid State Chem. 1999;146(2):506–15.

    CAS  Article  Google Scholar 

  14. 14.

    Stanimirova T, Kirov G. Cation composition during recrystallization of layered double hydroxides from mixed (Mg, Al) oxides. Appl Clay Sci. 2003;22(6):295–301.

    CAS  Article  Google Scholar 

  15. 15.

    Hutson ND, Speakman SA, Payzant EA. Structural effects on the high temperature adsorption of CO2 on a synthetic hydrotalcite. Chem Mater. 2004;16(21):4135–43.

    CAS  Article  Google Scholar 

  16. 16.

    Kloprogge JT, Hickey L, Frost RL. FT-Raman and FT-IR spectroscopic study of synthetic Mg/Zn/Al-hydrotalcites. J Raman Spectrosc. 2004;35(11):967–74.

    CAS  Article  Google Scholar 

  17. 17.

    Porta P, Morpurgo S. Cu/Zn/Co/Al/Cr-containing hydrotalcite-type anionic clays. Appl Clay Sci. 1995;10(1–2):31–44.

    CAS  Article  Google Scholar 

  18. 18.

    Costantino U, Marmottini F, Sisani M, Montanari T, Ramis G, Busca G, et al. Cu–Zn–Al hydrotalcites as precursors of catalysts for the production of hydrogen from methanol. Solid State Ion. 2005;176(39):2917–22.

    CAS  Article  Google Scholar 

  19. 19.

    Valente JS, Hernandez-Cortez J, Cantu MS, Ferrat G, López-Salinas E. Calcined layered double hydroxides Mg–Me–Al (Me: Cu, Fe, Ni, Zn) as bifunctional catalysts. Catal Today. 2010;150(3):340–5.

    CAS  Article  Google Scholar 

  20. 20.

    Di Fronzo A, Pirola C, Comazzi A, Galli F, Bianchi C, Di Michele A, et al. Co-based hydrotalcites as new catalysts for the Fischer–Tropsch synthesis process. Fuel. 2014;119:62–9.

    Article  CAS  Google Scholar 

  21. 21.

    Węgrzyn A, Rafalska-Łasocha A, Majda D, Dziembaj R, Papp H. The influence of mixed anionic composition of Mg–Al hydrotalcites on the thermal decomposition mechanism based on in situ study. J Therm Anal Calorim. 2009;99(2):443–57.

    Article  CAS  Google Scholar 

  22. 22.

    Tao Q, He H, Frost RL, Yuan P, Zhu J. Thermal decomposition of silylated layered double hydroxides. J Therm Anal Calorim. 2010;101(1):153–9.

    CAS  Article  Google Scholar 

  23. 23.

    León M, Díaz E, Bennici S, Vega A, Ordónez S, Auroux A. Adsorption of CO2 on hydrotalcite-derived mixed oxides: sorption mechanisms and consequences for adsorption irreversibility. Ind Eng Chem Res. 2010;49(8):3663–71.

    Article  CAS  Google Scholar 

  24. 24.

    Klemkaite K, Prosycevas I, Taraskevicius R, Khinsky A, Kareiva A. Synthesis and characterization of layered double hydroxides with different cations (Mg Co, Ni, Al), decomposition and reformation of mixed metal oxides to layered structures. Open Chem. 2011;9(2):275–82.

    CAS  Google Scholar 

  25. 25.

    Othman M, Helwani Z, Fernando W. Synthetic hydrotalcites from different routes and their application as catalysts and gas adsorbents: a review. Appl Organomet Chem. 2009;23(9):335–46.

    CAS  Article  Google Scholar 

  26. 26.

    Gupta S, Agarwal DD, Banerjee S. Synthesis and characterization of hydrotalcites: Potential thermal stabilizers for PVC. Indian J Chem. 2008;47A:1004–8.

  27. 27.

    Kovanda F, Jirátová K, Rymeš J, Koloušek D. Characterization of activated Cu/Mg/Al hydrotalcites and their catalytic activity in toluene combustion. Appl Clay Sci. 2001;18(1):71–80.

    Article  Google Scholar 

  28. 28.

    Jabłońska M, Chmielarz L, Węgrzyn A, Guzik K, Piwowarska Z, Witkowski S, et al. Thermal transformations of Cu–Mg (Zn)–Al(Fe) hydrotalcite-like materials into metal oxide systems and their catalytic activity in selective oxidation of ammonia to dinitrogen. J Therm Anal Calorim. 2013;114(2):731–47.

    Article  CAS  Google Scholar 

  29. 29.

    Ram Reddy M, Xu Z, Lu G, Diniz da Costa J. Layered double hydroxides for CO2 capture: structure evolution and regeneration. Ind Eng Chem Res. 2006;45(22):7504–9.

    CAS  Article  Google Scholar 

  30. 30.

    Hutson ND, Attwood BC. High temperature adsorption of CO2 on various hydrotalcite-like compounds. Adsorption. 2008;14(6):781–9.

    CAS  Article  Google Scholar 

  31. 31.

    Ficicilar B, Dogu T. Breakthrough analysis for CO2 removal by activated hydrotalcite and soda ash. Catal Today. 2006;115(1):274–8.

    CAS  Article  Google Scholar 

  32. 32.

    Yong Z, Mata V, Rodrigues AE. Adsorption of carbon dioxide onto hydrotalcite-like compounds (HTlcs) at high temperatures. Ind Eng Chem Res. 2001;40(1):204–9.

    CAS  Article  Google Scholar 

  33. 33.

    Zhu X, Shi Y, Cai N. High-pressure carbon dioxide adsorption kinetics of potassium-modified hydrotalcite at elevated temperature. Fuel. 2017;207:579–90.

    CAS  Article  Google Scholar 

  34. 34.

    Wang Q, Wu Z, Tay HH, Chen L, Liu Y, Chang J, et al. High temperature adsorption of CO2 on Mg–Al hydrotalcite: effect of the charge compensating anions and the synthesis pH. Catal Today. 2011;164(1):198–203.

    CAS  Article  Google Scholar 

  35. 35.

    Wang Q, Tay HH, Ng DJW, Chen L, Liu Y, Chang J, et al. The effect of trivalent cations on the performance of Mg–M–CO3 layered double hydroxides for high-temperature CO2 capture. Chemsuschem. 2010;3(8):965–73.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Costantino U, Marmottini F, Nocchetti M, Vivani R. New synthetic routes to hydrotalcite-like compounds-characterisation and properties of the obtained materials. Eur J Inorg Chem. 1998;1998(10):1439–46.

    Article  Google Scholar 

  37. 37.

    Basąg S, Kovanda F, Piwowarska Z, Kowalczyk A, Pamin K, Chmielarz L. Hydrotalcite-derived Co-containing mixed metal oxide catalysts for methanol incineration. J Therm Anal Calorim. 2017;129(3):1301–11.

    Article  CAS  Google Scholar 

  38. 38.

    Kloprogge JT, Wharton D, Hickey L, Frost RL. Infrared and Raman study of interlayer anions CO32–, NO3–, SO42– and ClO4– in Mg/Al-hydrotalcite. Am Miner. 2002;87(5–6):623–9.

    CAS  Article  Google Scholar 

  39. 39.

    Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A Cryst Phys Diffr Theor Gen Crystallog. 1976;32(5):751–67.

    Article  Google Scholar 

  40. 40.

    Costantino U, Curini M, Montanari F, Nocchetti M, Rosati O. Hydrotalcite-like compounds as catalysts in liquid phase organic synthesis: I. Knoevenagel condensation promoted by [Ni0.73Al0.27(OH)2](CO3)0.135. J Mol Catal A Chem. 2003;195(1):245–52.

    CAS  Article  Google Scholar 

  41. 41.

    Segal SR, Anderson KB, Carrado KA, Marshall CL. Low temperature steam reforming of methanol over layered double hydroxide-derived catalysts. Appl Catal A. 2002;231(1):215–26.

    CAS  Article  Google Scholar 

  42. 42.

    Lwin Y, Yarmo MA, Yaakob Z, Mohamad AB, Daud WRW. Synthesis and characterization of Cu–Al layered double hydroxides. Mater Res Bull. 2001;36(1):193–8.

    CAS  Article  Google Scholar 

  43. 43.

    Neves V, Costa M, Senra J, Aguiar L, Malta L. Thermal behavior of LDH 2CuAl. CO3 and 2CuAl. CO3/Pd. J Therm Anal Calorim. 2017;130(2):689–94.

    CAS  Article  Google Scholar 

  44. 44.

    Cavani F, Trifirò F, Vaccari A. Hydrotalcite-type anionic clays: preparation, properties and applications. Catal Today. 1991;11(2):173–301.

    CAS  Article  Google Scholar 

  45. 45.

    Resini C, Montanari T, Barattini L, Ramis G, Busca G, Presto S, et al. Hydrogen production by ethanol steam reforming over Ni catalysts derived from hydrotalcite-like precursors: catalyst characterization, catalytic activity and reaction path. Appl Catal A. 2009;355(1):83–93.

    CAS  Article  Google Scholar 

  46. 46.

    Goh K-H, Lim T-T, Dong Z. Application of layered double hydroxides for removal of oxyanions: a review. Water Res. 2008;42(6):1343–68.

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Basąg S, Piwowarska Z, Kowalczyk A, Węgrzyn A, Baran R, Gil B, et al. Cu-Mg-Al hydrotalcite-like materials as precursors of effective catalysts for selective oxidation of ammonia to dinitrogen—the influence of Mg/Al ratio and calcination temperature. Appl Clay Sci. 2016;129:122–30.

    Article  CAS  Google Scholar 

  48. 48.

    Alejandre A, Medina F, Rodriguez X, Salagre P, Cesteros Y, Sueiras J. Cu/Ni/Al layered double hydroxides as precursors of catalysts for the wet air oxidation of phenol aqueous solutions. Appl Catal B. 2001;30(1):195–207.

    CAS  Article  Google Scholar 

  49. 49.

    Alejandre A, Medina F, Salagre P, Correig X, Sueiras J. Preparation and study of Cu–Al mixed oxides via hydrotalcite-like precursors. Chem Mater. 1999;11(4):939–48.

    CAS  Article  Google Scholar 

  50. 50.

    Seftel E, Popovici E, Mertens M, De Witte K, Van Tendeloo G, Cool P, et al. Zn–Al layered double hydroxides: synthesis, characterization and photocatalytic application. Microporous Mesoporous Mater. 2008;113(1):296–304.

    CAS  Article  Google Scholar 

  51. 51.

    Porta P, De Rossi S, Ferraris G, Jacono ML, Minelli G, Moretti G. Structural characterization of malachite-like coprecipitated precursors of binary CuO–ZnO catalysts. J Catal. 1988;109(2):367–77.

    CAS  Article  Google Scholar 

  52. 52.

    Behrens M, Girgsdies F, Trunschke A, Schlögl R. Minerals as model compounds for Cu/ZnO catalyst precursors: structural and thermal properties and IR spectra of mineral and synthetic (zincian) malachite, rosasite and aurichalcite and a catalyst precursor mixture. Eur J Inorg Chem. 2009;2009(10):1347–57.

    Article  CAS  Google Scholar 

  53. 53.

    Smoláková L, Frolich K, Troppová I, Kutálek P, Kroft E, Čapek L. Determination of basic sites in Mg–Al mixed oxides by combination of TPD-CO2 and CO2 adsorption calorimetry. J Therm Anal Calorim. 2017;127(3):1921–9.

    Article  CAS  Google Scholar 

Download references


This research work was funded by “ITACA” project of the POR-FESR “Competitività regionale e occupazione” 2007/2013, Asse 1, Misura I.1.1, “Piattaforme innovative” of the Piedmont Region (Italy). Prof. Matteo Pavese at Politecnico di Torino is acknowledged for providing access to TG-MS equipment. Authors gratefully acknowledge A. Petracci and R. Spogli at Prolabin & Tefarm S.r.l for SEM analysis and the useful discussions. Furthermore, Prof. Giovanni Camino at Politecnico di Torino is gratefully acknowledged for discussion and interpretation of results.

Author information



Corresponding author

Correspondence to A. Fina.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 994 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Colonna, S., Bastianini, M., Sisani, M. et al. CO2 adsorption and desorption properties of calcined layered double hydroxides. J Therm Anal Calorim 133, 869–879 (2018).

Download citation


  • LDH
  • MMO
  • CO2 adsorption
  • Chemisorption
  • Physisorption