Skip to main content
Log in

Investigation on interaction induced cluster-shaped Zn-doped Fe3O4 formation by in situ calorimetry

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

It is fascinating but challenging to investigate the interaction induced the self-assembled structures, which always show novel properties. Cluster-shaped Zn-doped Fe3O4 self-assembled by nanosized particles exhibits high saturation magnetism and superparamagnetism. However, the interaction among these particles has not been reported as far as we know. At the present study, the transition from cluster-shaped to monodispersed Zn-doped Fe3O4 was successfully obtained through the addition of ethylenediamine (EDA). In situ calorimetric technology was used to study these formation processes. The results demonstrate that “–OCH2CH2O–” groups bond Fe3+ and Zn2+ ions together, which can be used to induce cluster-shaped sample formation. This study may give a route to synthesize self-assembled materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Scheme 2
Fig. 8
Scheme 3

Similar content being viewed by others

References

  1. Rashmi SK, Seethy H, Naik B, Jayadevappa H, Sudhamani CN, Patil SB, Naik MM. Influence of Sm3+ ions on structural, optical and solar light driven photocatalytic activity of spinel MnFe2O4 nanoparticles. J Solid State Chem. 2017;255:178–92.

    Article  CAS  Google Scholar 

  2. Junca E, de Oliveira JR, Restivo TAG, Espinosa DCR, Tenório JAS. Synthetic zinc ferrite reduction by means of mixtures containing hydrogen and carbon monoxide. J Therm Anal Calorim. 2016;123:631–4.

    Article  CAS  Google Scholar 

  3. Muntean C, Bozdog M, Duma S, Stefanescu M. Study on the formation of Co1−xZnxFe2O4 system using two low-temperature synthesis methods. J Therm Anal Calorim. 2016;123:117–26.

    Article  CAS  Google Scholar 

  4. Burda C, Chen XB, Narayanan R, El-Sayed MA. Chemistry and properties of nanocrystals of different shapes. Chem Rev. 2005;105:1025–102.

    Article  CAS  PubMed  Google Scholar 

  5. Mathew DS, Juang RS. An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem Eng J. 2007;129:51–65.

    Article  CAS  Google Scholar 

  6. Chen JP, Sorensen CM, Klabunde KJ, Hadjipanayis GC, Devlin E, Kostikas A. Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation. Phys Rev B. 1996;54:9288–96.

    Article  CAS  Google Scholar 

  7. Chen ZP, Fang WQ, Zhang B, Yang HG. High-yield synthesis and magnetic properties of ZnFe2O4 single crystal nanocubes in aqueous solution. J Alloys Compd. 2013;550:348–52.

    Article  CAS  Google Scholar 

  8. Zhao B, Nan Z. Effects of CTAB on magnetic properties of ZnLa0.02Fe1.98O4 crystals. J Alloys Compd. 2013;580:321–6.

    Article  CAS  Google Scholar 

  9. Guo XW, Lu X, Fang XP, Mao Y, Wang ZX, Chen LQ, Xu XX, Yang H, Liu YN. Lithium storage in hollow spherical ZnFe2O4 as anode materials for lithium ion batteries. Electrochem Commun. 2010;12:847–50.

    Article  CAS  Google Scholar 

  10. Zhang GY, Sun YQ, Gao DZ, Xu YY. Quasi-cube ZnFe2O4 nanocrystals: hydrothermal synthesis and photocatalytic activity with TiO2 (Degussa P25) as nanocomposite. Mater Res Bull. 2010;45:755–60.

    Article  CAS  Google Scholar 

  11. Tahir AA, Wijayantha KGU, Mazhar M, McKee V. ZnFe2O4 thin films from a single source precursor by aerosol assisted chemical vapour deposition. Thin Solid Films. 2010;518:3664–8.

    Article  CAS  Google Scholar 

  12. Sharma Y, Sharma N, Rao GVS, Chowdari BVR. Li-storage and cyclability of urea combustion derived ZnFe2O4 as anode for Li-ion batteries. Electrochim Acta. 2008;53:2380–5.

    Article  CAS  Google Scholar 

  13. Wu H, Liu G, Wang X, Zhang J, Chen Y, Shi J, Yang H, Hu H, Yang S. Solvothermal synthesis of cobalt ferrite nanoparticles loaded on multiwalled carbon nanotubes for magnetic resonance imaging and drug delivery. Acta Biomater. 2011;7:3496–504.

    Article  CAS  PubMed  Google Scholar 

  14. Liu X, Liu J, Zhang S, Nan Z, Shi Q. Structural, magnetic, and thermodynamic evolutions of Zn-doped Fe3O4 nanoparticles synthesized using a one-step solvothermal method. J Phys Chem C. 2016;120:1328–41.

    Article  CAS  Google Scholar 

  15. Liu J, Zhang Y, Nan Z. Facile synthesis of stoichiometric zinc ferrite nanocrystal clusters with superparamagnetism and high magnetization. Mater Res Bull. 2014;60:270–8.

    Article  CAS  Google Scholar 

  16. Liu J, Nan Z, Gao S. In situ microcalorimetry study of ZnFe2O4 nanoparticle formation under solvothermal conditions. Dalton Trans. 2015;44:17293–301.

    Article  CAS  PubMed  Google Scholar 

  17. Yu BY, Kwak SY. Self-assembled mesoporous Co and Ni-ferrite spherical clusters consisting of spinel nanocrystals prepared using a template-free approach. Dalton Trans. 2011;40:9989–98.

    Article  CAS  PubMed  Google Scholar 

  18. Cheng W, Tang K, Qi Y, Sheng J, Liu Z. One-step synthesis of superparamagnetic monodisperse porous Fe3O4 hollow and core-shell spheres. J Mater Chem. 2010;20:1799–805.

    Article  CAS  Google Scholar 

  19. Prasad BD, Nagabhushana H, Thyagarajan K. Temperature dependent magnetic ordering and electrical transport behavior of nano zinc ferrite from 20 to 800 K. J Alloys Compd. 2014;590:184–92.

    Article  CAS  Google Scholar 

  20. Rameshbabu R, Ramesh R, Kanagesan S. Effect of TEA on the structural and magnetic properties of ferromagnetic ZnFe2O4 nanoparticles. J Mater Sci Mater Electron. 2015;26:547–53.

    Article  CAS  Google Scholar 

  21. Selvan RK, Krishnan V, Augustin CO, Bertagnolli H, Kim CS, Gedanken A. Investigations on the structural, morphological, electrical, and magnetic properties of CuFe2O4–NiO nanocomposites. Chem Mater. 2008;20:429–39.

    Article  CAS  Google Scholar 

  22. Krehula S, Musić S, Skoko ZE. The influence of Zn-dopant on the precipitation of α-FeOOH in highly alkaline media. J Alloys Compd. 2006;420:260–8.

    Article  CAS  Google Scholar 

  23. Suzuki M, Hanabusa K. L-lysine-based low-molecular-weight gelators. Chem Soc Rev. 2009;38:967–75.

    Article  CAS  PubMed  Google Scholar 

  24. Vemula PK, John G. Crops: a green approach toward self-assembled soft materials. Acc Chem Res. 2008;41:769–82.

    Article  CAS  PubMed  Google Scholar 

  25. Sabale S, Jadhav V, Khot V, Zhu X, Xin M, Chen H. Superparamagnetic MFe2O4 (M = Ni Co, Zn, Mn) nanoparticles: synthesis, characterization, induction heating and cell viability studies for cancer hyperthermia applications. J Mater Sci Mater Med. 2015;26:1–9.

    Article  CAS  Google Scholar 

  26. Xia L, Ju JG, Xu W. Preparation and characterization of hollow Fe2O3 ultra-fine fibers by centrifugal spinning. Mater Des. 2016;96:439–45.

    Article  CAS  Google Scholar 

  27. Kawano S, Fujita N, Shinkai S. A coordination gelator that shows a reversible chromatic change and sol-gel phase-transition behavior upon oxidative/reductive stimuli. J Am Chem Soc. 2004;126:8592–3.

    Article  CAS  PubMed  Google Scholar 

  28. Hatten X, Bell N, Yufa N, Christmann G, Nitschke JR. A dynamic covalent, luminescent metallopolymer that undergoes sol-to-gel transition on temperature rise. J Am Chem Soc. 2011;133:3158–64.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the National Nature Science Foundations of China (21673204 and 21273196) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaodong Nan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 525 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Cen, H. & Nan, Z. Investigation on interaction induced cluster-shaped Zn-doped Fe3O4 formation by in situ calorimetry. J Therm Anal Calorim 132, 1481–1488 (2018). https://doi.org/10.1007/s10973-018-7139-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7139-5

Keywords

Navigation