Skip to main content
Log in

Enthalpy increments and thermodynamic functions of rare earth samarium titanates RESmTi2O7(s) (RE = Gd,Dy)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Enthalpy measurements have been taken on GdSmTi2O7 and DySmTi2O7 by using a high-temperature differential calorimeter at temperature between 800 and 1655 K. Thermodynamic function, such as heat capacity, entropy and Gibbs energy functions of GdSmTi2O7 and DySmTi2O7, was derived using the data obtained in this study. The results are presented and compared with the data available in the literature. The polynomial expression of enthalpy increments obtained for GdSmTi2O7(s) and DySmTi2O7(s) in the temperature range 298–1700 K is given as: \(\begin{aligned} H_{\text{T}}^{0} - H_{298}^{0} / {\text{J}}\,{\text{mol}}^{ - 1} & = 252.961\,T \, + 1.596 \times 10^{ - 2} \,T^{2} + 3.705 \times 10^{6} \,T^{ - 1} - 89{,}265\quad ({\text{GdSmTi}}_{2} {\text{O}}_{7} ) \\ H_{\text{T}}^{0} - H_{298}^{0} / {\text{J}}\,{\text{mol}}^{ - 1} & = 256.504\,T \, + 1.576 \times 10^{ - 2} \,T^{2} + 3.531 \times 10^{6} \,T^{ - 1} - 89{,}721\quad \left( {{\text{DySmTi}}_{2} {\text{O}}_{7} } \right). \\ \end{aligned}\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Risovany VD, Varlashova EE, Suslov DN. Dysprosium titanate as an absorber material for control rods. J Nucl Mater. 2000;281:84–9.

    Article  CAS  Google Scholar 

  2. Colin M. Matériaux absorbants neutroniques pour le pilotage des reacteurs nucleaires. Techniques de l’lngenieur Genie nucléaires B. 1989;8-2:3720–5.

    Google Scholar 

  3. Wu PCS. Europia as nuclear control material, WARD-292. Washington Advanced Reactors Division; 1973.

  4. Pasto AE. Europium oxide as a potential LMFBR Control material, ORNL-TM-4226. Oak Ridge National Laboratory; 1973.

  5. Davis RJ, Liu Z. A model binary oxide catalyst system. Chem Mater. 1997;9:2311–24.

    Article  CAS  Google Scholar 

  6. Liu Z, Davis RJ. Investigation of the structure of micro porous Ti–Si mixed oxides by X-ray, UV Reflectance, FT-Raman, and FT-IR spectroscopies. J Phys Chem. 1994;8:1253–61.

    Article  Google Scholar 

  7. Anpo M, Nakaya MH, Kodama S, Kubokawa Y, Domen K, Onishi T. Photo catalysis over binary metal oxides, enhancement of the photo catalytic activity of titanium dioxide in titanium-silicon oxides. J Phys Chem. 1986;90:1633–6.

    Article  CAS  Google Scholar 

  8. Jeon S, Braun PV. Hydrothermal synthesis of Er-doped luminescent TiO2 nanoparticles. Chem Mater. 2003;15:1256–63.

    Article  CAS  Google Scholar 

  9. Stouwdam JW, Van Veggel FCJM. Sensitized emission in Ln3+-doped TiO2 semiconductor nanoparticle. Chem Phys Chem. 2004;5:743–6.

    Article  CAS  PubMed  Google Scholar 

  10. Sprink DR, Schemel JH. The development of rare earth pyrohafnates for power reactor control-rod materials. J Nucl Mater. 1973;74(49):1–9.

    Article  Google Scholar 

  11. Nagarajan K, Saha R, Babu R, Mathews CK. Thermodynamic function of barium and strontium zirconium from calorimetric measurements. Thermochim Acta. 1985;90:279–304.

    Article  Google Scholar 

  12. Kandan R, Panneerselvam G, Prabhakara Reddy B. High-temperature heat content and thermodynamic functions of REEuTi2O7 (RE = Gd, Dy) from calorimetric measurements. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6216-5.

    Article  Google Scholar 

  13. Ditmars DA, Ishihara S, Chang SS, Bernstein G, West ED. Enthalpy and heat-capacity standard reference material: synthetic sapphire (α-Al2O3) from 10 to 2250 K. J Res Natl Bur Stand. 1982;87(2):159–63.

    Article  CAS  Google Scholar 

  14. Godfrey TG, Woodley JA, Leitnaker JM. Thermodynamic functions of nuclear materials UC, UC2, UO2, ThO2 and UN, ORNL-TM-1596 (Rev), ORNL Technical Report. Oak Ridge: National Laboratory; 1966.

  15. Pankratz LB. Thermodynamic properties of elements and oxides. Bull US Bur Mines. Report No.: Bumines B 672; 1983.

  16. Powder diffraction files (Inorganic Phases), Joint Committee on Powder Diffraction Data (JCPDS) International Centre for Diffraction Data; 1984 (ICDD card number: 23-0259 for GdSmTi2O7 and 16-0400 for DySmTi2O7).

  17. Kandan R, Prabhakara Reddy B, Panneerselvam G, Nagarajan K. Enthalpy increment measurements on europium titanate. J Therm Anal Calorim. 2013;112:59–61.

    Article  CAS  Google Scholar 

  18. Kandan R, Prabhakara Reddy B, Panneerselvam G, Nagarajan K. Calorimetric measurements on rare earth titanates: RE2TiO5 (R = Sm, Gd & Dy). J Therm Anal Calorim. 2016;124:1349–55.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Prabhakara Reddy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kandan, R., Prabhakara Reddy, B. & Panneerselvam, G. Enthalpy increments and thermodynamic functions of rare earth samarium titanates RESmTi2O7(s) (RE = Gd,Dy). J Therm Anal Calorim 132, 1639–1644 (2018). https://doi.org/10.1007/s10973-018-7125-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7125-y

Keywords

Navigation