Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 132, Issue 3, pp 1523–1534 | Cite as

Variable temperature PXRD investigation of the phase changes during the dehydration of potassium Tutton salts

  • Ana C. Morales
  • Nicholas D. Cooper
  • Barbara A. Reisner
  • Thomas C. DeVore
Article
  • 54 Downloads

Abstract

The thermal dehydration of the potassium Tutton salts K2M(SO4)2·6H2O (M = Mg, Co, Ni, Cu, Zn) was investigated using thermal gravimetric analysis (TG), differential scanning calorimetry (DSC), FTIR, and variable temperature powder X-ray diffraction. While each Tutton salts lost all six waters of hydration when heated to 500 K, the decomposition pathway depended on the divalent metal cation. K2Ni(SO4)2·6H2O lost all six waters in a single step, and K2Cu(SO4)2·6H2O consistently lost water in two steps in capped and uncapped cells. In contrast, multiple decomposition pathways were observed for the magnesium, cobalt, and zinc Tutton salts when capped and uncapped TG cells were used. K2Zn(SO4)2·6H2O lost the waters of hydration in a single step in an uncapped cell and in two steps in a capped cell. Both K2Mg(SO4)2·6H2O and K2Co(SO4)2·6H2O decomposed in a series of steps where the stability of the intermediates depended on the cell configuration. A greater number of phases were often observed in DSC and capped-cells TG experiments. A quasi-equilibrium model is presented that could explain this observation. These results highlight that experimental conditions play a critical role in the observed thermal decomposition pathway of Tutton salts.

Keywords

Tutton salts Thermal dehydration Thermal gravimetric analysis Powder X-ray diffraction FTIR Dehydration pathways Author contact information 

Notes

Acknowledgements

The authors gratefully acknowledge the NSF REU (CHE-1461175), MRI (CHE-0320245), and IMR (DMR-0315345) programs.

Supplementary material

10973_2018_7107_MOESM1_ESM.docx (1 mb)
Supplementary material 1 (DOCX 1044 kb)

References

  1. 1.
    Montgomery H, Lingafelter EC. The crystal structure of Tutton’s salts. II. Magnesium ammonium sulfate hexahydrate and nickel ammonium sulfate hexahydrate. Acta Crystallogr. 1964;17:1478–9.CrossRefGoogle Scholar
  2. 2.
    Montgomery H, Lingafelter EC. The crystal structure of Tutton’s salts. III. Copper ammonium sulfate hexahydrate. Acta Crystallogr. 1966;20:659–62.CrossRefGoogle Scholar
  3. 3.
    Montgomery H, Chyastain RV, Lingafelter EC. The crystal structure of Tutton’s salts. V. Manganese ammonium sulfate hexahydrate. Acta Crystallogr. 1966;20:731–3.CrossRefGoogle Scholar
  4. 4.
    Ray G. X-ray studies on the partially dehydrated phases of some paramagnetic Tutton salts. Acta Crystallogr. 1967;22:771–4.CrossRefGoogle Scholar
  5. 5.
    Campbell JA, Ryan DP, Simpson LM. Interionic forces in crystals—II. Infrared spectra of SO4 2− groups and “octahedrally” coordinated water in some alums, Tutton salts, and the double salts obtained by dehydrating them. Spectrochim. Acta Part A Mol Spectrosc. 1970;26:2351–61.CrossRefGoogle Scholar
  6. 6.
    Whitnall JM, Kennard CHL. The stereochemistry of Tutton’s salts X2[M(H2O)6](YO4)2. J Solid State Chem. 1977;22:379–83.CrossRefGoogle Scholar
  7. 7.
    Maslen EN, Ridout SC, Watson KJ, Moore FH. The structures of Tutton’s salts. II. Diammonium hexaaquanickel(II) sulfate. Acta Crystallogr Sect C Cryst Struct Commun. 1988;44:412–5.CrossRefGoogle Scholar
  8. 8.
    Maslen EN, Ridout SC, Watson KJ. Electron density in non-ideal metal complexes. IV. Hexaaquametal(II) ammonium sulfates. Acta Crystallogr Sect B Struct Sci. 1988;44:96–101.CrossRefGoogle Scholar
  9. 9.
    Tahirov TH, Lu TH, Huang CC, Chung CS. A precise structure redetermination of nickel ammonium sulfate hexahydrate, Ni(H2O)6·2NH4·2SO4. Acta Crystallogr Sect C Cryst Struct Commun. 1994;50:668–9.CrossRefGoogle Scholar
  10. 10.
    Voigt W, Goring S. Melting of Tutton’s salts studied by DSC. Thermochim Acta. 1994;231:13–26.CrossRefGoogle Scholar
  11. 11.
    Dhandapani M, Thyagu L, Prakash PA, Amirthaganesan G, Kandhaswamy MA, Srinivasan V. Synthesis and characterization of potassium magnesium sulphate hexahydrate crystals. Cryst Res Technol. 2006;41:328–31.CrossRefGoogle Scholar
  12. 12.
    Ballirano P, Belardi G, Bosi F. Redetermination of the Tutton’s salt Cs2[Cu(H2O)6](SO4)2. Acta Crystallogr Sect E Struct Rep Online. 2007;63:i164–5.CrossRefGoogle Scholar
  13. 13.
    Bosi F, Belardi G, Ballirano P. Structural features in Tutton’s salts K2[M2 +(H2O)6](SO4)2, with M2 + = Mg, Fe Co, Ni, Cu, and Zn. Am Mineral. 2009;94:74–82.CrossRefGoogle Scholar
  14. 14.
    Ivanovski V, Mayerhöfer TG, Popp J. Dispersion analysis of polarized IR reflectance spectra of Tutton salts: the ν3(SO4 2−) frequency region. Vib Spectrosc. 2008;47:91–8.CrossRefGoogle Scholar
  15. 15.
    Euler H, Barbier B, Meents A, Kirfel A. Crystal structures of Tutton’s salts Tl2[MII(H2O)6](SO4)2, MII = Mg, Mn, Fe Co, Ni, Zn. Z Krist New Cryst Struct. 2009;224:355–9.Google Scholar
  16. 16.
    Karadjova V, Stoilova D. Infrared spectroscopic study of Rb2M(XO4)2·6H2O (M = Mg Co, Ni, Cu, Zn; X = S, Se) and of SO4 2− guest ions included in rubidium Tutton selenates. J Mol Struct. 2013;1050:204–10.CrossRefGoogle Scholar
  17. 17.
    Lim AR. Thermodynamic properties and molecular dynamics of (NH4)2Zn(SO4)2·6H2O studied by single-crystal NMR and MAS NMR. J Therm Anal Calorim. 2013;114:699–703.CrossRefGoogle Scholar
  18. 18.
    Kim WY, Park YW, Park BK, Lim AR. Crystal growth and thermal properties of the Tutton salt Cs2Fe(SO4)2·6H2O single crystal. J Therm Anal Calorim. 2015;119:239–43.CrossRefGoogle Scholar
  19. 19.
    Souamti A, Zayani L, Palomino JM, Cruz-Yusta M, Vicente CP, Hassen-Chehimi DB. Synthesis, characterization and thermal analysis of K2M(SO4)2·6H2O (M = Mg Co, Cu). J Therm Anal Calorim. 2015;122:929–36.CrossRefGoogle Scholar
  20. 20.
    Lim AR, Kim SH. Structural and thermodynamic properties of Tutton salt K2Zn(SO4)2·6H2O. J Therm Anal Calorim. 2016;123:371–6.CrossRefGoogle Scholar
  21. 21.
    Wildner M, Marinova D, Stoilova D. Vibrational spectra of Cs2Cu(SO4)2·6H2O and Cs2Cu(SeO4)2·nH2O (n = 4,6) with a crystal structure determination of the Tutton salt Cs2Cu(SeO4)2. J Mol Struct. 2016;1106:440–51.CrossRefGoogle Scholar
  22. 22.
    Marzougui H, Attia-Essaies S, Hassen-Chehimi DB. Synthesis, thermal, XRD and spectroscopic studies characterization of Tutton salt K2M(SO4)2·6H2O (M = Mg, Ni). J Mol Struct. 2016;1120:234–8.CrossRefGoogle Scholar
  23. 23.
    Galwey AK. Structure and order in thermal dehydrations of crystalline solids. Thermochim Acta. 2000;355:181–238.CrossRefGoogle Scholar
  24. 24.
    White RL. Variable temperature infrared study of copper sulfate pentahydrate dehydration. Thermochim Acta. 2012;528:58–62.CrossRefGoogle Scholar
  25. 25.
    Brock LR, Keister JW, France M, Fierro N, DeVore TC. The thermal decomposition of ammonium meta-vanadate under restricted flow conditions. Am J Anal Chem. 2017;8:35–50.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Ana C. Morales
    • 1
  • Nicholas D. Cooper
    • 1
  • Barbara A. Reisner
    • 1
  • Thomas C. DeVore
    • 1
  1. 1.Department of Chemistry and BiochemistryJames Madison UniversityHarrisonburgUSA

Personalised recommendations