Skip to main content
Log in

Combination of nanofluid and inserts for heat transfer enhancement

Gaps and challenges

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Improving heat transfer is a critical subject for energy conservation systems which directly affects economic efficiency of these systems. There are active and passive methods which can be employed to enhance the rate of heat transfer without reducing the general efficiency of the energy conservation systems. Among these methods, passive techniques are more cost-effective and reliable in comparison with active ones as they have no moving parts. To achieve further improvements in heat transfer performances, some researchers combined passive techniques. This article performs a review of the literature on the area of heat transfer improvement employing a combination of nanofluid and inserts. Inserts are baffles, twisted tape, vortex generators, and wire coil inserts. The progress made and the current challenges for each combined system are discussed, and some conclusions and suggestions are made for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

d, D :

Inner diameter of tube (m)

d p :

Nanoparticle diameter (nm)

D h :

Hydraulic diameter (m)

e :

Wire diameter (m)

e l :

Winglets–length ratio (-)

e p :

Winglets–pitch ratio (-)

e w :

Winglets–width ratio (-)

f :

Friction factor (-)

h :

Twist tape pitch (m)

H :

Pitch of twisted tape (m)

I p :

Longitudinal pitch (m)

l :

Twist length (m)

L :

Duct length (m)

N :

Number of tapes (-)

Nu :

Nusselt number (-)

p :

Pitch ratio (-)

p :

Perimeter of tube (m)

p :

Power (W)

Pr :

Prandtl number (-)

Re :

Reynolds number (-)

S :

Tube surface (m2)

T :

Tape thickness (m)

t p :

Transverse pitch (m)

w :

Tape width (m)

w h :

Wing height (m)

w w :

Wing width (m)

y :

Twist length (m)

Y :

Twist ratio (-)

y o :

Overlapped pitch length of tape (m)

x :

Axial distance (m)

f :

Base fluid

m :

Bulk

nf:

Nanofluid

p :

Particle

TA:

Twisted tape with alternate axis

TT:

Typical twisted tape

α :

Wing attach angle (°)

α f :

Area modification factor (°)

β :

Wing attack angle (°)

μ :

Dynamic viscosity (kg m−1 s−1)

φ :

Solid volume fraction of nanoparticles (-)

CNT:

Carbon nanotube

DW:

Delta wing

DWP:

Delta winglet

HL:

High to low

LH:

Low to high

MWCNT:

Multiwall carbon nanotubes

PEC:

Performance evaluation criterion

RW:

Rectangular wing

RWP:

Rectangular winglet

U:

Uniform

References

  1. Rashidi S, Bafekr H, Masoodi R, Languri EM. EHD in thermal energy systems: a review of the applications, modelling, and experiments. J Electrost. 2017;90:1–14.

    Article  Google Scholar 

  2. Amirahmadi SA, Rashidi S, Esfahani JA. Minimization of exergy losses in a trapezoidal duct with turbulator, roughness and beveled corners. Appl Therm Eng. 2016;107:533–43.

    Article  CAS  Google Scholar 

  3. Bovand M, Rashidi S, Esfahani JA. Heat transfer enhancement and pressure drop penalty in porous solar heaters: numerical simulations. Sol Energy. 2016;123:145–59.

    Article  Google Scholar 

  4. Rashidi S, Esfahani JA, Rashidi A. A review on the applications of porous materials in solar energy systems. Renew Sustain Energy Rev. 2017;73:1198–210.

    Article  CAS  Google Scholar 

  5. Rashidi S, Bovand M, Esfahani JA. Structural optimization of nanofluid flow around an equilateral triangular obstacle. Energy. 2015;88:385–98.

    Article  CAS  Google Scholar 

  6. Rashidi S, Zade NM, Esfahani JA. Thermo-fluid performance and entropy generation analysis for a new eccentric helical screw tape insert in a 3D tube. Chem Eng Process Process Intensif. 2017;117:27–37.

    Article  CAS  Google Scholar 

  7. Akbarzadeh M, Rashidi S, Esfahani JA. Influences of corrugation profiles on entropy generation, heat transfer, pressure drop, and performance in a wavy channel. Appl Therm Eng. 2017;116:278–91.

    Article  Google Scholar 

  8. Rashidi S, Mahian O, Languri EM. Applications of nanofluids in condensing and evaporating systems. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6773-7.

    Article  Google Scholar 

  9. Rashidi S, Akbarzadeh M, Masoodi R, Languri EM. Thermal-hydraulic and entropy generation analysis for turbulent flow inside a corrugated channel. Int J Heat Mass Transf. 2017;109:812–23.

    Article  Google Scholar 

  10. Zade NM, Akar S, Rashidi S, Esfahani JA. Thermo-hydraulic analysis for a novel eccentric helical screw tape insert in a three dimensional tube. Appl Therm Eng. 2017;124:413–21.

    Article  Google Scholar 

  11. Kakaç S, Pramuanjaroenkij A. Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transf. 2009;52(13–14):3187–96.

    Article  CAS  Google Scholar 

  12. Sundar LS, Singh MK. Convective heat transfer and friction factor correlations of nanofluid in a tube and with inserts: a review. Renew Sustain Energy Rev. 2013;20:23–35.

    Article  CAS  Google Scholar 

  13. Kareem ZS, Jaafar MM, Lazim TM, Abdullah S, Abdulwahid AF. Passive heat transfer enhancement review in corrugation. Exp Therm Fluid Sci. 2015;68:22–38.

    Article  Google Scholar 

  14. Sheikholeslami M, Gorji-Bandpy M, Ganji DD. Review of heat transfer enhancement methods: focus on passive methods using swirl flow devices. Renew Sustain Energy Rev. 2015;49:444–69.

    Article  Google Scholar 

  15. Varun, Garg MO, Nautiyal H, Khurana S, Shukla MK. Heat transfer augmentation using twisted tape inserts: a review. Renew Sustain Energy Rev. 2016;63:193–225.

    Article  Google Scholar 

  16. Sidik NA, Muhamad MN, Japar WM, Rasid ZA. An overview of passive techniques for heat transfer augmentation in microchannel heat sink. Int Commun Heat Mass Transf. 2017;88:74–83.

    Article  Google Scholar 

  17. Gallegos RK, Sharma RN. Flags as vortex generators for heat transfer enhancement: gaps and challenges. Renew Sustain Energy Rev. 2017;76:950–62.

    Article  Google Scholar 

  18. Mohammed KA, Talib AA, Nuraini AA, Ahmed KA. Review of forced convection nanofluids through corrugated facing step. Renew Sustain Energy Rev. 2017;75:234–41.

    Article  CAS  Google Scholar 

  19. Cai J, Hu X, Xiao B, Zhou Y, Wei W. Recent developments on fractal-based approaches to nanofluids and nanoparticle aggregation. Int J Heat Mass Transf. 2017;105:623–37.

    Article  CAS  Google Scholar 

  20. Zhang Z, Cai J, Chen F, Li H, Zhang W, Qi W. Progress in enhancement of CO2 absorption by nanofluids: a mini review of mechanisms and current status. Renew Energy. 2018;118:527–35.

    Article  CAS  Google Scholar 

  21. Chen Y, Fiebig M, Mitra NK. Conjugate heat transfer of a finned oval tube with a punched longitudinal vortex generator in form of a delta winglet—parametric investigations of the winglet. Int J Heat Mass Transf. 1998;41(23):3961–78.

    Article  CAS  Google Scholar 

  22. Chompookham T, Thianpong C, Kwankaomeng S, Promvonge P. Heat transfer augmentation in a wedge-ribbed channel using winglet vortex generators. Int Commun Heat Mass Transf. 2010;37(2):163–9.

    Article  Google Scholar 

  23. Ahmed HE, Mohammed HA, Yusoff MZ. An overview on heat transfer augmentation using vortex generators and nanofluids: approaches and applications. Renew Sustain Energy Rev. 2012;16:5951–93.

    Article  CAS  Google Scholar 

  24. Khoshvaght-Aliabadi M, Hormozi F, Zamzamian A. Effects of geometrical parameters on performance of plate-fin heat exchanger: vortex-generator as core surface and nanofluid as working media. Appl Therm Eng. 2014;70(1):565–79.

    Article  CAS  Google Scholar 

  25. Ahmed HE, Yusoff MZ. Impact of delta-winglet pair of vortex generators on the thermal and hydraulic performance of a triangular channel using Al2O3–water nanofluid. J Heat Transf. 2014;136(2):021901.

    Article  CAS  Google Scholar 

  26. Ahmed HE, Yusoff MZ, Hawlader MN, Ahmed MI. Numerical analysis of heat transfer and nanofluid flow in a triangular duct with vortex generator: two-phase model. Heat Transf Asian Res. 2016;45(3):264–84.

    Article  Google Scholar 

  27. Abdollahi A, Shams M. Optimization of heat transfer enhancement of nanofluid in a channel with winglet vortex generator. Appl Therm Eng. 2015;91:1116–26.

    Article  Google Scholar 

  28. Ahmed HE, Ahmed MI, Yusoff MZ, Hawlader MN, Al-Ani H. Experimental study of heat transfer augmentation in non-circular duct using combined nanofluids and vortex generator. Int J Heat Mass Transf. 2015;90:1197–206.

    Article  CAS  Google Scholar 

  29. Khoshvaght-Aliabadi M. Thermal performance of plate-fin heat exchanger using passive techniques: vortex-generator and nanofluid. Heat Mass Transf. 2016;52(4):819–28.

    Article  CAS  Google Scholar 

  30. Khoshvaght-Aliabadi M, Akbari MH, Hormozi F. An empirical study on vortex-generator insert fitted in tubular heat exchangers with dilute Cu–water nanofluid flow. Chin J Chem Eng. 2016;24(6):728–36.

    Article  CAS  Google Scholar 

  31. Sheikholeslami M, Ganji DD. Heat transfer improvement in a double pipe heat exchanger by means of perforated turbulators. Energy Convers Manag. 2016;127:112–23.

    Article  Google Scholar 

  32. Webb RL, Eckert ER. Application of rough surfaces to heat exchanger design. Int J Heat Mass Transf. 1972;15(9):1647–58.

    Article  Google Scholar 

  33. Ebrahimi A, Rikhtegar F, Sabaghan A, Roohi E. Heat transfer and entropy generation in a microchannel with longitudinal vortex generators using nanofluids. Energy. 2016;101:190–201.

    Article  CAS  Google Scholar 

  34. Sabaghan A, Edalatpour M, Moghadam MC, Roohi E, Niazmand H. Nanofluid flow and heat transfer in a microchannel with longitudinal vortex generators: two-phase numerical simulation. Appl Therm Eng. 2016;100:179–89.

    Article  CAS  Google Scholar 

  35. Mamourian M, Shirvan KM, Mirzakhanlari S, Rahimi AB. Vortex generators position effect on heat transfer and nanofluid homogeneity: a numerical investigation and sensitivity analysis. Appl Therm Eng. 2016;107:1233–47.

    Article  Google Scholar 

  36. Khoshvaght-Aliabadi M, Baneshi Z, Khaligh SF. Analysis on performance of nanofluid-cooled vortex-generator channels with variable longitudinal spacing among delta-winglets. Appl Therm Eng. 2017;122:1–10.

    Article  CAS  Google Scholar 

  37. Hosseinirad E, Hormozi F. New correlations to predict the thermal and hydraulic performance of different longitudinal pin fins as vortex generator in miniature channel: utilizing MWCNT-water and Al2O3–water nanofluids. Appl Therm Eng. 2017;118:199–213.

    Article  CAS  Google Scholar 

  38. Chandrasekar M, Suresh S, Bose AC. Experimental studies on heat transfer and friction factor characteristics of Al2O3/water nanofluid in a circular pipe under laminar flow with wire coil inserts. Exp Therm Fluid Sci. 2010;34(2):122–30.

    Article  CAS  Google Scholar 

  39. Saeedinia M, Akhavan-Behabadi MA, Nasr M. Experimental study on heat transfer and pressure drop of nanofluid flow in a horizontal coiled wire inserted tube under constant heat flux. Exp Therm Fluid Sci. 2012;36:158–68.

    Article  CAS  Google Scholar 

  40. Akhavan-Behabadi MA, Shahidi M, Aligoodarz MR. An experimental study on heat transfer and pressure drop of MWCNT-water nano-fluid inside horizontal coiled wire inserted tube. Int Commun Heat Mass Transf. 2015;63:62–72.

    Article  CAS  Google Scholar 

  41. Fallahiyekta M, Nasr MJ, Rashidi A, Arjmand M. Convective heat transfer enhancement of CNT-water nanofluids in plain tube fitted with wire coil inserts. Iran J Chem Eng. 2014;11(2):43–55.

    Google Scholar 

  42. Chandrasekar M, Suresh S, Bose AC. Experimental studies on heat transfer and friction factor characteristics of Al2O3/water nanofluid in a circular pipe under transition flow with wire coil inserts. Heat Transf Eng. 2011;32(6):485–96.

    Article  CAS  Google Scholar 

  43. Kulkarni SP, Oak SM. Heat transfer enhancement in tube in tube heat exchanger with helical wire coil inserts and CuO nanofluid. Int J Mech Eng. 2015;3:2321–6441.

    Google Scholar 

  44. Chougule SS, Nirgude VV, Gharge PD, Mayank M, Sahu SK. Heat transfer enhancements of low volume concentration CNT/water nanofluid and wire coil inserts in a circular tube. Energy Procedia. 2016;90:552–8.

    Article  CAS  Google Scholar 

  45. Mirzaei M, Azimi A. Heat transfer and pressure drop characteristics of graphene oxide/water nanofluid in a circular tube fitted with wire coil insert. Exp Heat Transf. 2016;29(2):173–87.

    Article  CAS  Google Scholar 

  46. Safikhani H, Zare Mehrjardi A, Safari M. Effect of inserting coiled wires in tubes on the fluid flow and heat transfer performance of nanofluids. Transp Phenom Nano Micro Scales. 2016;4(2):9–16.

    Google Scholar 

  47. Goudarzi K, Jamali H. Heat transfer enhancement of Al2O3-EG nanofluid in a car radiator with wire coil inserts. Appl Therm Eng. 2017;118:510–7.

    Article  CAS  Google Scholar 

  48. Sundar LS, Bhramara P, Ravi Kumar NT, Singh MK. Sousa A.C.M. Experimental heat transfer, friction factor and effectiveness analysis of Fe3O4 nanofluid flow in a horizontal plain tube with return bend and wire coil inserts. Int. J Heat Mass Transf. 2017;109:440–53.

    Article  CAS  Google Scholar 

  49. Sharma KV, Sundar LS, Sarma PK. Estimation of heat transfer coefficient and friction factor in the transition flow with low volume concentration of Al2O3 nanofluid flowing in a circular tube and with twisted tape insert. Int Commun Heat Mass Transf. 2009;36(5):503–7.

    Article  CAS  Google Scholar 

  50. Sundar LS, Sharma KV. Turbulent heat transfer and friction factor of Al2O3 nanofluid in circular tube with twisted tape inserts. Int J Heat Mass Transf. 2010;53(7–8):1409–16.

    Article  CAS  Google Scholar 

  51. Pathipakka G, Sivashanmugam P. Heat transfer behaviour of nanofluids in a uniformly heated circular tube fitted with helical inserts in laminar flow. Superlattices Microstruct. 2010;47(2):349–60.

    Article  CAS  Google Scholar 

  52. Wongcharee K, Eiamsa-Ard S. Enhancement of heat transfer using CuO/water nanofluid and twisted tape with alternate axis. Int Commun Heat Mass Transf. 2011;38(6):742–8.

    Article  CAS  Google Scholar 

  53. Eiamsa-Ard S, Promvonge P. Performance assessment in a heat exchanger tube with alternate clockwise and counter-clockwise twisted-tape inserts. Int J Heat Mass Transf. 2010;53(7–8):1364–72.

    Article  Google Scholar 

  54. Wongcharee K, Eiamsa-Ard S. Friction and heat transfer characteristics of laminar swirl flow through the round tubes inserted with alternate clockwise and counter-clockwise twisted-tapes. Int Commun Heat Mass Transf. 2011;38(3):348–52.

    Article  Google Scholar 

  55. Suresh S, Venkitaraj KP, Selvakumar P. Comparative study on thermal performance of helical screw tape inserts in laminar flow using Al2O3/water and CuO/water nanofluids. Superlattices Microstruct. 2011;49(6):608–22.

    Article  CAS  Google Scholar 

  56. Suresh S, Venkitaraj KP, Selvakumar P, Chandrasekar M. A comparison of thermal characteristics of Al2O3/water and CuO/water nanofluids in transition flow through a straight circular duct fitted with helical screw tape inserts. Exp Therm Fluid Sci. 2012;39:37–44.

    Article  CAS  Google Scholar 

  57. Sundar LS, Kumar NR, Naik MT, Sharma KV. Effect of full length twisted tape inserts on heat transfer and friction factor enhancement with Fe3O4 magnetic nanofluid inside a plain tube: an experimental study. Int J Heat Mass Transf. 2012;55(11–12):2761–8.

    Article  CAS  Google Scholar 

  58. Eiamsa-Ard S, Wongcharee K. Single-phase heat transfer of CuO/water nanofluids in micro-fin tube equipped with dual twisted-tapes. Int Commun Heat Mass Transf. 2012;39(9):1453–9.

    Article  CAS  Google Scholar 

  59. Wongcharee K, Eiamsa-Ard S. Heat transfer enhancement by using CuO/water nanofluid in corrugated tube equipped with twisted tape. Int Commun Heat Mass Transf. 2012;39(2):251–7.

    Article  CAS  Google Scholar 

  60. Sekhar YR, Sharma KV, Karupparaj RT, Chiranjeevi C. Heat transfer enhancement with Al2O3 nanofluids and twisted tapes in a pipe for solar thermal applications. Procedia Eng. 2013;64:1474–84.

    Article  CAS  Google Scholar 

  61. Esmaeilzadeh E, Almohammadi H, Nokhosteen A, Motezaker A, Omrani AN. Study on heat transfer and friction factor characteristics of γ-Al2O3/water through circular tube with twisted tape inserts with different thicknesses. Int J Therm Sci. 2014;82:72–83.

    Article  CAS  Google Scholar 

  62. Maddah H, Aghayari R, Farokhi M, Jahanizadeh S, Ashtary K. Effect of twisted-tape turbulators and nanofluid on heat transfer in a double pipe heat exchanger. J Eng. 2014;2014:1–9.

    Article  Google Scholar 

  63. Salman SD, Kadhum AA, Takriff MS, Mohamad AB. Heat transfer enhancement of laminar nanofluids flow in a circular tube fitted with parabolic-cut twisted tape inserts. Sci World J. 2014;2014:1–7.

    Article  CAS  Google Scholar 

  64. Prasad PD, Gupta AV, Sreeramulu M, Sundar LS, Singh MK, Sousa AC. Experimental study of heat transfer and friction factor of Al2O3 nanofluid in U-tube heat exchanger with helical tape inserts. Exp Therm Fluid Sci. 2015;62:141–50.

    Article  CAS  Google Scholar 

  65. Prasad PD, Gupta AV, Deepak K. Investigation of trapezoidal-cut twisted tape insert in a double pipe U-tube heat exchanger using Al2O3/water nanofluid. Procedia Mater Sci. 2015;10:50–63.

    Article  CAS  Google Scholar 

  66. Naik MT, Janardana GR, Sundar LS. Experimental investigation of heat transfer and friction factor with water–propylene glycol based CuO nanofluid in a tube with twisted tape inserts. Int Commun Heat Mass Transf. 2013;46:13–21.

    Article  CAS  Google Scholar 

  67. Naik MT, Fahad SS, Sundar LS, Singh MK. Comparative study on thermal performance of twisted tape and wire coil inserts in turbulent flow using CuO/water nanofluid. Exp Therm Fluid Sci. 2014;57:65–76.

    Article  CAS  Google Scholar 

  68. Azmi WH, Sharma KV, Sarma PK, Mamat R, Anuar S. Comparison of convective heat transfer coefficient and friction factor of TiO2 nanofluid flow in a tube with twisted tape inserts. Int J Therm Sci. 2014;81:84–93.

    Article  CAS  Google Scholar 

  69. Azmi WH, Sharma KV, Sarma PK, Mamat R, Anuar S, Sundar LS. Numerical validation of experimental heat transfer coefficient with SiO2 nanofluid flowing in a tube with twisted tape inserts. Appl Therm Eng. 2014;73(1):296–306.

    Article  CAS  Google Scholar 

  70. Azmi WH, Sharma KV, Mamat R, Anuar S. Turbulent forced convection heat transfer of nanofluids with twisted tape insert in a plain tube. Energy Procedia. 2014;52:296–307.

    Article  CAS  Google Scholar 

  71. Eiamsa-Ard S, Kiatkittipong K. Heat transfer enhancement by multiple twisted tape inserts and TiO2/water nanofluid. Appl Therm Eng. 2014;70(1):896–924.

    Article  CAS  Google Scholar 

  72. Maddah H, Alizadeh M, Ghasemi N, Alwi SR. Experimental study of Al2O3/water nanofluid turbulent heat transfer enhancement in the horizontal double pipes fitted with modified twisted tapes. Int J Heat Mass Transf. 2014;78:1042–54.

    Article  CAS  Google Scholar 

  73. Safikhani HA, Eiamsa-Ard S. Multi-objective optimization of TiO2–Water nanofluid flow in tubes fitted with multiple twisted tape inserts in different arrangement. Transp Phenom Nano Micro Scales. 2015;3(2):89–99.

    Google Scholar 

  74. Aghayari R, Maddah H, Arani JB, Mohammadiun Nikpanje E. An experimental investigation of heat transfer of Fe2O3/water nanofluid in a double pipe heat exchanger. Int J Nano Dimens. 2015;6:517–24.

    CAS  Google Scholar 

  75. Khoshvaght-Aliabadi M, Eskandari M. Influence of twist length variations on thermal–hydraulic specifications of twisted-tape inserts in presence of Cu–water nanofluid. Exp Therm Fluid Sci. 2015;61:230–40.

    Article  CAS  Google Scholar 

  76. Safikhani H, Abbasi F. Numerical study of nanofluid flow in flat tubes fitted with multiple twisted tapes. Adv Powder Technol. 2015;26(6):1609–17.

    Article  CAS  Google Scholar 

  77. Eiamsa-Ard S, Kiatkittipong K, Jedsadaratanachai W. Heat transfer enhancement of TiO2/water nanofluid in a heat exchanger tube equipped with overlapped dual twisted-tapes. Eng Sci Technol. 2015;18(3):336–50.

    Google Scholar 

  78. Chougule SS, Sahu SK. Heat transfer and friction characteristics of Al2O3/water and CNT/water nanofluids in transition flow using helical screw tape inserts–a comparative study. Chem Eng Process Process Intensif. 2015;88:78–88.

    Article  CAS  Google Scholar 

  79. Sadeghi O, Mohammed HA, Bakhtiari-Nejad M, Wahid MA. Heat transfer and nanofluid flow characteristics through a circular tube fitted with helical tape inserts. Int Commun Heat Mass Transf. 2016;71:234–44.

    Article  CAS  Google Scholar 

  80. Prasad PD, Gupta AV. Experimental investigation on enhancement of heat transfer using Al2O3/water nanofluid in a U-tube with twisted tape inserts. Int Commun Heat Mass Transf. 2016;75:154–61.

    Article  CAS  Google Scholar 

  81. Buschmann MH. Nanofluid heat transfer in laminar pipe flow with twisted tape. Heat Transf Eng. 2017;38(2):162–76.

    Article  CAS  Google Scholar 

  82. Zheng L, Xie Y, Zhang D. Numerical investigation on heat transfer performance and flow characteristics in circular tubes with dimpled twisted tapes using Al2O3–water nanofluid. Int J Heat Mass Transf. 2017;111:962–81.

    Article  CAS  Google Scholar 

  83. Hosseinnezhad R, Akbari OA, Afrouzi HH, Biglarian M, Koveiti A, Toghraie D. Numerical study of turbulent nanofluid heat transfer in a tubular heat exchanger with twin twisted-tape inserts. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6900-5.

    Article  Google Scholar 

  84. Rashidi S, Akbarzadeh M, Karimi N, Masoodi R. Combined effects of nanofluid and transverse twisted-baffles on the flow structures, heat transfer and irreversibilities inside a square duct–a numerical study. Appl Therm Eng. 2018;130:135–48.

    Article  CAS  Google Scholar 

  85. Shahmohammadi A, Jafari A. Application of different CFD multiphase models to investigate effects of baffles and nanoparticles on heat transfer enhancement. Front Chem Sci Eng. 2014;8(3):320–9.

    Article  CAS  Google Scholar 

  86. Wang G, Stone K, Vanka SP. Unsteady heat transfer in baffled channels. J Heat Transf. 1996;118(3):585–91.

    Article  CAS  Google Scholar 

  87. Khorasanizadeh H, Amani J, Nikfar M. Numerical investigation of Cu–water nanofluid natural convection and entropy generation within a cavity with an embedded conductive baffle. Sci Iran. 2012;19(6):1996–2003.

    Article  Google Scholar 

  88. Elias MM, Shahrul IM, Mahbubul IM, Saidur R, Rahim NA. Effect of different nanoparticle shapes on shell and tube heat exchanger using different baffle angles and operated with nanofluid. Int J Heat Mass Transf. 2014;70:289–97.

    Article  CAS  Google Scholar 

  89. Mohammed HA, Alawi OA, Wahid MA. Mixed convective nanofluid flow in a channel having backward-facing step with a baffle. Powder Technol. 2015;275:329–43.

    Article  CAS  Google Scholar 

  90. Heshmati A, Mohammed HA, Darus AN. Mixed convection heat transfer of nanofluids over backward facing step having a slotted baffle. Appl Math Comput. 2014;240:368–86.

    Google Scholar 

  91. Targui N, Kahalerras H. Analysis of a double pipe heat exchanger performance by use of porous baffles and nanofluids. World Acad Sci Eng Technol Int J Mech Aerosp Ind Mechatron Manuf Eng. 2014;8:1546–51.

    Google Scholar 

  92. Bahiraei M, Hosseinalipour SM, Saeedan M. Prediction of Nusselt number and friction factor of water–Al2O3 nanofluid flow in shell-and-tube heat exchanger with helical baffles. Chem Eng Commun. 2015;202(2):260–8.

    Article  CAS  Google Scholar 

  93. Bahiraei M, Hangi M, Saeedan M. A novel application for energy efficiency improvement using nanofluid in shell and tube heat exchanger equipped with helical baffles. Energy. 2015;93:2229–40.

    Article  CAS  Google Scholar 

  94. Dong C, Chen YP, Wu JF. Flow and heat transfer performances of helical baffle heat exchangers with different baffle configurations. Appl Therm Eng. 2015;80:328–38.

    Article  CAS  Google Scholar 

  95. Gao B, Bi Q, Nie Z, Wu J. Experimental study of effects of baffle helix angle on shell-side performance of shell-and-tube heat exchangers with discontinuous helical baffles. Exp Therm Fluid Sci. 2015;68:48–57.

    Article  Google Scholar 

  96. Saeedan M, Nazar AR, Abbasi Y, Karimi R. CFD Investigation and neutral network modeling of heat transfer and pressure drop of nanofluids in double pipe helically baffled heat exchanger with a 3-D fined tube. Appl Therm Eng. 2016;100:721–9.

    Article  CAS  Google Scholar 

  97. Fazeli H, Madani S, Mashaei PR. Nanofluid forced convection in entrance region of a baffled channel considering nanoparticle migration. Appl Therm Eng. 2016;106:293–306.

    Article  CAS  Google Scholar 

  98. Armaghani T, Kasaeipoor A, Alavi N, Rashidi MM. Numerical investigation of water-alumina nanofluid natural convection heat transfer and entropy generation in a baffled L-shaped cavity. J Mol Liq. 2016;223:243–51.

    Article  CAS  Google Scholar 

  99. Bashi M, Rashidi S, Esfahani JA. Exergy analysis for a plate-fin triangular duct enhanced by a porous material. Appl Therm Eng. 2017;110:1448–61.

    Article  CAS  Google Scholar 

  100. Sekrani G, Poncet S, Proulx P. Modeling of convective turbulent heat transfer of water-based Al2O3 nanofluids in an uniformly heated pipe. Chem Eng Sci. 2018;176:205–19.

    Article  CAS  Google Scholar 

  101. Ahmed HE, Mohammed HA, Yusoff MZ. Heat transfer enhancement of laminar nanofluids flow in a triangular duct using vortex generator. Superlattices Microstruct. 2012;52(3):398–415.

    Article  CAS  Google Scholar 

  102. Elango T, Kannan A, Murugavel KK. Performance study on single basin single slope solar still with different water nanofluids. Desalination. 2015;360:45–51.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S. Poncet acknowledges the support of the NSERC chair on industrial energy efficiency funded by Hydro-Québec, Natural Resources Canada (CanmetENERGY) and Rio Tinto Alcan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Poncet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashidi, S., Eskandarian, M., Mahian, O. et al. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim 135, 437–460 (2019). https://doi.org/10.1007/s10973-018-7070-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7070-9

Keywords

Navigation