Skip to main content
Log in

Entropy generation of MHD nanofluid inside an inclined wavy cavity by lattice Boltzmann method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, lattice Boltzmann method is applied in order to simulate the magnetohydrodynamic (MHD) natural convection heat transfer and entropy generation of CuO–water nanofluid inside an inclined wavy cavity. The left wavy wall is heated sinusoidal, while the right flat wall is kept at a constant temperature. The top and the bottom horizontal walls are smooth and insulated against heat and mass. The effects of active parameters such as solid volume fraction of nanoparticles, Rayleigh number, Hartmann number and inclination angles are examined on flow, heat transfer and entropy generation. The results proved that the heat transfer and entropy generation decline significantly with increasing Hartmann numbers, while those rise with increasing Rayleigh numbers. The results show that the effect of nanoparticles volume fraction on dimensionless Nusselt number and entropy generation is more pronounced at high Rayleigh number than at low Rayleigh number. Also the results indicate that the mean Nusselt number and total entropy generation changes with inclination angle, while the minimum values of \(Nu_{\text{m}}\) and S belong to \(\theta = \pi /3\) and 0, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\(B\) :

Magnetic field

\(Be\) :

Bejan number

\(c\) :

Lattice speed

\(C_{\text{S}}\) :

Speed of sound

\(C_{\text{P}}\) :

Heat capacity (J kg−1 K−1)

\(F\) :

External force

\({\text{f}}_{\text{i}}\) :

Particle distribution function

\({\text{g}}_{\text{i}}\) :

Energy distribution function

\(g\) :

Gravity (m s−2)

\(H\) :

Height of the cavity (m)

\(Ha\) :

Hartmann number

\(k\) :

Thermal conductivity (W m−1 K−1)

\(Nu\) :

Nusselt number

\(Pr = \frac{\vartheta }{\alpha }\) :

Prandtl number

\(Ra = \frac{{g_{y} \beta H^{3}\Delta T}}{\vartheta \alpha }\) :

Rayleigh number

\({\text{S}}\) :

Dimensionless entropy

\(S_{\text{HTI}}\) :

Entropy generation due to heat transfer

\(S_{\text{FFI}}\) :

Entropy generation due to fluid friction

\(S_{\text{MHFI}}\) :

Entropy generation due to magnetic field

\(u\) :

Velocity in the x-direction (m s−1)

\(v\) :

Velocity in the y-direction (m s−1)

\(U = \frac{uW}{{\alpha_{\text{f}} }}\) :

Dimensionless velocity in the x-direction

\(V = \frac{vW}{{\alpha_{\text{f}} }}\) :

Dimensionless velocity in the y-direction

\(W\) :

Length of the cavity (m)

\(x,y\) :

Coordinates (m)

\(\alpha\) :

Thermal diffusivity (m2 s−1)

\(\beta\) :

Thermal expansion coefficient (K−1)

\(\varphi\) :

Nanoparticles volume fraction

\(\phi\) :

Phase deviation

\(\mu\) :

Dynamic viscosity (kg m−1 s−1)

\(\rho\) :

Density (kg m−3)

\(\sigma\) :

Electrical conductivity

\(T^{*} = \frac{{T - T_{\text{C}} }}{{T_{\text{H}} - T_{\text{C}} }}\) :

Non-dimensional temperature

\(\tau\) :

Relaxation time

\({\text{eq}}\) :

Equilibrium state

f:

Fluid

l:

Local

m:

Mean

nf:

Nanofluid

p:

Nanoparticle

T:

Thermal

\(\vartheta\) :

Velocity

References

  1. Iwanik PO, Chiu WKS. Temperature distribution of an optical fiber traversing through a chemical vapor deposition reactor. Numer Heat Transf Part A Appl. 2003;43:221–37.

    Article  CAS  Google Scholar 

  2. Li H, Tong S. Natural convective heat transfer in the inclined rectangular cavities with low width- to-height ratios. Int J Heat Mass Transf. 2016;93:398–407.

    Article  Google Scholar 

  3. Tsai GL, Li HY, Lin CC. Effect of the angle of inclination of a plate shield on the thermal and hydraulic performance of a plate-fin heat sink. Int Commun Heat Mass Transf. 2010;3:364–71.

    Article  Google Scholar 

  4. Sheikholeslami M, Oztop HF. MHD free convection of nanofluid in a cavity with sinusoidal walls by using CVFEM. Chin J Phys. 2017;55:2291–304.

    Article  CAS  Google Scholar 

  5. Mahmud S, Islam AKM. Laminar free convection and entropy generation inside an inclined way enclosure. Int J Thermal Sci. 2003;42:1003–12.

    Article  Google Scholar 

  6. Singh AK, Roy S, Basak T, Momoniat E. Role of entropy generation on thermal management during natural convection in a tilted square cavity with isothermal and non-isothermal hot walls. Numer Heat Transf A. 2014;66:1243–67.

    Article  CAS  Google Scholar 

  7. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. In: Proceedings of the 1995 ASME international mechanical engineering congress and exposition, FED 231/MD 66, 1995, p. 99–105.

  8. Cho CC, Chen CL, Chen CK. Natural convection and entropy generation of Al2O3 water nanofluid in an inclined wavy-wall cavity. Int J Heat Mass Transf. 2016;97:511–20.

    Article  CAS  Google Scholar 

  9. Mehrez Z, Cafsi AE, Belghith A, Quéré PL. The entropy generation analysis in the mixed convective assisting flow of Cu–water nanofluid in an inclined open cavity. Adv Powder Technol. 2015;26:1442–51.

    Article  CAS  Google Scholar 

  10. Kolsi L, Oztop HF, Alghamdi A, Abu-Hamdeh N, Borjini MN, Aissia HB. A computational work on a three-dimensional analysis of natural convection and entropy generation in nanofluid filled enclosures with triangular solid insert at the corners. J. Mol Liq. 2016;218:260–74.

    Article  CAS  Google Scholar 

  11. Abu-Nada E, Oztop HF, Pop I. Effects of surface waviness on heat and fluid flow in a nanofluid filled closed space with partial heating. Heat Mass Transf. 2016;52:1909–21.

    Article  CAS  Google Scholar 

  12. Selimefendigil F, Öztop HF. Conjugate natural convection in a cavity with a conductive partition and filled with different nanofluids on different sides of the partition. J Mol Liq. 2016;216:67–77.

    Article  CAS  Google Scholar 

  13. Akar S, Rashidi S, Abolfazli Esfahani J. Second law of thermodynamic analysis for nanofluid turbulent flow around a rotating cylinder. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6907-y.

    Article  Google Scholar 

  14. Rashidi S, Mahian O, Languri EM. Applications of nanofluids in condensing and evaporating systems. J Therm Anal Calorim. (2017). https://doi.org/10.1007/s10973-017-6773-7

    Article  Google Scholar 

  15. Shirejini SZ, Rashidi S, Esfahani JA. Recovery of drop in heat transfer rate for a rotating system by nanofluids. J Mol Liq. 2016;220:961–9.

    Article  CAS  Google Scholar 

  16. Maskaniyan M, Rashidi S, Abolfazli Esfahani JA. A two-way couple of Eulerian–Lagrangian model for particle transport with different sizes in an obstructed channel. Powder Technol. 2017;312:260–9.

    Article  CAS  Google Scholar 

  17. Javadi P, Rashidi S, Abolfazli Esfahani J. Flow and heat management around obstacle by nanofluid and incidence angle. J Thermophys Heat Transf. 2017;31:983–8.

    Article  CAS  Google Scholar 

  18. Bovand M, Rashidi S, Esfahani JA. Optimum interaction between magnetohydrodynamics and nanofluid for thermal and drag management. J Thermophys Heat Transf. 2017;31:218–29.

    Article  CAS  Google Scholar 

  19. Hasanpour A, Farhadi M, Sedighi K, Ashorynejad HR. Numerical study of Prandtl effect on MHD flow at a lid-driven porous cavity. Int J Numer Methods Heat Fluid Flow. 2012;70:886–98.

    Article  CAS  Google Scholar 

  20. Ashorynejad HR, Mohamad AA, Sheikholeslami M. Magnetic field effects on natural convection flow of a nanofluid in a horizontal cylindrical annulus using lattice Boltzmann method. Int J Therm Sci. 2013;64:240–50.

    Article  CAS  Google Scholar 

  21. Selimefendigil F, Öztop HF. Natural convection and entropy generation of nanofluid filled cavity having different shaped obstacles under the influence of magnetic field and internal heat generation. J Taiwan Inst Chem Eng. 2015;56:42–56.

    Article  CAS  Google Scholar 

  22. Kefayati GR. Simulation of heat transfer and entropy generation of MHD natural convection of non-Newtonian nanofluid in an enclosure. Int J Heat Mass Transf. 2016;92:1066–89.

    Article  Google Scholar 

  23. Sheikholeslami M, Ganji DD. Entropy generation of nanofluid in presence of magnetic field using lattice Boltzmann Method. Phys A Stat Mech Appl. 2015;417:273–86.

    Article  CAS  Google Scholar 

  24. Mamourian M, Shirvan KM, Pop I. Sensitivity analysis for MHD effects and inclination angles on natural convection heat transfer and entropy generation of Al2O3-water nanofluid in square cavity by response surface methodology. Int Commun Heat Mass Transf. 2016;79:46–57.

    Article  CAS  Google Scholar 

  25. Chamkha A, Ismael M, Kasaeipoor A, Armaghani T. Entropy generation and natural convection of CuO-water nanofluid in C-shaped cavity under magnetic field. Entropy. 2016;50:1–18.

    Google Scholar 

  26. Ashorynejad HR, Zarghami A. Magnetohydrodynamics flow and heat transfer of Cu-water nanofluid through a partially porous wavy channel. Int J Heat Mass Transf. 2018;119:247–58.

    Article  CAS  Google Scholar 

  27. Hussein AK, Ashorynejad HR, Sheikholeslami M. Sivasankaran, lattice Boltzmann simulation of natural convection heat transfer in an open enclosure filled with Cu–water nanofluid in a presence of magnetic field. Nucl Eng Des. 2014;268:10–7.

    Article  CAS  Google Scholar 

  28. Hoseinpour B, Ashorynejad HR, Javaherdeh K. Entropy generation of nanofluid in a porous cavity by lattice Boltzmann method. J Thermophys Heat Transf. 2017;31:20–7.

    Article  CAS  Google Scholar 

  29. Ashorynejad HR, Hoseinpour B. Investigation of different nanofluids effect on entropy generation on natural convection in a porous cavity. Eur J Mech B Fluids. 2017;62:86–93.

    Article  Google Scholar 

  30. Filippova O, Häne D. Boundary fitting and local grid refinement for lattice-BGK models. Int J Mod Phys C. 1998;9:1271–9.

    Article  Google Scholar 

  31. Mei R, Luo LS, Shyy W. An accurate curved boundary treatment in the lattice Boltzmann method. J Comput Phys. 1999;155:307–30.

    Article  CAS  Google Scholar 

  32. Guo Z, Zheng C, Shi B. An extrapolation method for boundary conditions in lattice Boltzmann method. Phys Fluids 2002;14: 2007–2010.

  33. Mahmoudi A, Mejri I, Abbassi MA, Omri A. Analysis of the entropy generation in a nanofluid-filled cavity in the presence of magnetic field and uniform heat generation/absorption. J Mol Liq. 2014;198:63–77.

    Article  CAS  Google Scholar 

  34. Mejri I, Mahmoudi A, Abbassi MA, Omri A. Magnetic field effect on entropy generation in a nanofluid-filled enclosure with sinusoidal heating on both side walls. Powder Technol. 2014;266:340–53.

    Article  CAS  Google Scholar 

  35. Sabeur-Bendehina A, Imine O, Adjlout L. Laminar free convection in undulated cavity with non-uniform boundary conditions. CR Mec. 2011;339:42–57.

    Article  Google Scholar 

  36. Shahriari A. Numerical simulation of free convection heat transfer of nanofluid in a wavy wall cavity with sinusoidal temperature distribution, using lattice Boltzmann method. Modares Mech Eng. 2016;16:143–54.

    Google Scholar 

  37. Das SK, Choi SUS, Yu W, Pradeep Y. Nanofluids: science and technology. New Jersey: Wiley; 2008.

    Google Scholar 

  38. Nield DA, Bejan A. Convection in porous media. 4th ed. New York: Springer; 2013.

    Book  Google Scholar 

  39. Shenoy A, Sheremet M, Pop I. Convective flow and heat transfer from wavy surfaces: viscous fluids, porous media and nanofluids. New York: CRC Press; 2016.

    Book  Google Scholar 

  40. Buongiorno J, et al. A benchmark study on the thermal conductivity of nanofluids. J Appl Phys. 2009;106:1–14.

    Article  CAS  Google Scholar 

  41. Kakaç S, Pramuanjaroenkij A. Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transf. 2009;52:3187–96.

    Article  CAS  Google Scholar 

  42. Fan J, Wang L. Review of heat conduction in nanofluids. ASME J Heat Transf. 2011;133:1–14.

    Google Scholar 

  43. Mahian O, Kianifar A, Kalogirou SA, Pop I, Wongwises S. A review of the applications of nanofluids in solar energy. Int J Heat Mass Transf. 2013;57:582–94.

    Article  CAS  Google Scholar 

  44. Sheikholeslami M, Ganji DD. Nanofluid convective heat transfer using semi analytical and numerical approaches: a review. J Taiwan Inst Chem Eng. 2016;65:43–77.

    Article  CAS  Google Scholar 

  45. Sheikholeslami M, Gorji-Bandpy M, Vajravelu K. Lattice Boltzmann simulation of magnetohydrodynamic natural convection heat transfer of Al2O3–water nanofluid in a horizontal cylindrical enclosure with an inner triangular cylinder. Int J Heat Mass Transf. 2015;80:16–25.

    Article  CAS  Google Scholar 

  46. Brinkman HC. The viscosity of concentrated suspensions and solution. Chem Phys. 1952;20:571–81.

    CAS  Google Scholar 

  47. Hamilton RL, Crosser OK. Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam. 1962;1:187–91.

    Article  CAS  Google Scholar 

  48. Kao PH, Yang RJ. Simulating oscillatory flows in Rayleigh–Bénard convection using the lattice Boltzmann method. Int J Heat Mass Transf. 2007;50:3315–28.

    Article  CAS  Google Scholar 

  49. Chen S, Doolen GD. Lattice Boltzmann method for fluid flow. Annu Rev Fluid Mech. 1998;30:329–64.

    Article  Google Scholar 

  50. Ahrar AJ, Djavareshkian MH. Lattice Boltzmann simulation of a Cu-water nanofluid filled cavity in order to investigate the Influence of volume fraction and magnetic field specifications on flow and heat transfer. J Mol Liq. 2016;215:328–38.

    Article  CAS  Google Scholar 

  51. Ilis GG, Mobedi M, Sunden B. Effect of aspect ratio on entropy generation in a rectangular cavity with differentially heated vertical walls. Int Commun Heat Mass Transf. 2008;35:696–703.

    Article  CAS  Google Scholar 

  52. Sheremet MA, Pop I, Rosca NC. Magnetic field effect on the unsteady natural convection in a wavy-walled cavity filled with a nanofluid: Buongiorno’s mathematical model wavy-wall enclosed cavity filled with nanofluid. J Taiwan Inst Chem Eng. 2016;61:211–22.

    Article  CAS  Google Scholar 

  53. Ghasemi B, Aminossadati SM, Raisi A. Magnetic field effect on natural convection in a nanofluid-filled square enclosure. Int J Therm Sci. 2011;50:1748–56.

    Article  CAS  Google Scholar 

  54. Bejan A. Entropy generation through heat and fluid flow. New York: Wiley; 1982.

    Google Scholar 

  55. Bejan A. Entropy generation minimization. New York: CRC Press; 1996.

    Google Scholar 

  56. Kefayati GR. Lattice Boltzmann simulation of natural convection in nanofluid-filled 2D long enclosures at presence of magnetic field. Theor Comput Fluid Dyn 2013;27:865-83.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work of I. Pop was supported by the Grant PN-III-P4-ID-PCE-2016-0036, UEFISCDI, Romania. The authors wish to express their thanks to the very competent reviewers for the very good comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioan Pop.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahriari, A., Ashorynejad, H.R. & Pop, I. Entropy generation of MHD nanofluid inside an inclined wavy cavity by lattice Boltzmann method. J Therm Anal Calorim 135, 283–303 (2019). https://doi.org/10.1007/s10973-018-7061-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7061-x

Keywords

Navigation