Advertisement

Experimental investigation and prediction of the thermal conductivity of water-based oxide nanofluids with low volume fractions

  • Jingyu Jin
  • Mohammad Hatami
  • Dengwei Jing
Article

Abstract

Although there are already many models for prediction of the thermal conductivity of nanoparticle suspension, most of them only consider the cases for high nanoparticle volume fractions (often > 0.1%). Considering the cost of particle itself, pumping and transportation, dispersion stability, etc., low particle concentrations are obviously more preferred. The present study firstly experimentally investigated the thermal conductivity of some oxide colloid suspensions with low particle concentrations. It was found that the famous multi-sphere Brownian model (MSBM) showed a large deviation for thermal conductivity prediction when the particle concentrations are below 0.1%. By introducing an adjustable exponential constant, n, into the volume fraction item of MSBM, the predicted thermal conductivity can be in good agreement with experimental data for the particle volume fractions ranging from 0.001 to 10%. The dependency of n on the particle volume fraction and its possible physical significance were discussed in detail. It turns out that, when the volume fraction is larger than 1%, the modified model can be reduced to the original MSBM. The value of n approximately equals to 0.7 when the volume fractions of nanofluids are lower than 0.005%. Between these two volume fractions, n is found to follow a nearly linear relation with the logarithm of volume fraction. The validity of the modified MSBM model for practical supplication was further justified based on numerical method. The simulation results showed that our model has excellent agreement with Maxwell–Garnetts model in low volume fraction ranges due to the weak interaction between various nanoparticles in the system. Our study should be of value for numerical simulation and engineering design of nanofluids in the future.

Keywords

Nanoparticle suspension Thermal conductivity Multi-sphere Brownian model Low volume fractions 

List of symbols

Roman letters

A

Empirical constant

cpf

Specific heat of the base fluid (J kg−1 K−1)

dp

Diameter of the nanoparticle (m)

k

Thermal conductivity (W m−1 K−1)

kb

Boltzmann constant = 1.3807 × 10−23 (J K−1)

m

Empirical constant

MSBM

Multi-sphere Brownian model

n

Empirical constant

Nu

Nusselt number

Pr

Prandtl number

Rb

Thermal boundary resistance (m2 K W−1)

Re

Reynolds number

T

Kelvin temperature (K)

Greek symbols

α

Biot number

\(\varphi\)

Particle volume fraction

μ

Dynamic viscosity (kg m−1 s−1)

ν

Kinematic viscosity (m2 s−1)

ρ

Density (kg m−3)

Subscripts

f

Fluid

m

Matrix

n

Nanofluid

p

Particle

Notes

Acknowledgements

The authors gratefully acknowledge the financial supports of the National Natural Science Foundation of China (No. 51776165). This work was also supported by the China Fundamental Research Funds for the Central Universities.

References

  1. 1.
    Krishnamurthy S, Bhattacharya P, Phelan PE, Prasher RS. Enhanced mass transport in nanofluids. Nano Lett. 2006;6:419–23.CrossRefGoogle Scholar
  2. 2.
    Yu W, France DM. Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf Eng. 2008;29:432–60.CrossRefGoogle Scholar
  3. 3.
    Bashirnezhad K, Rashidi MM, Yang Z, Bazri S, Yan WM. A comprehensive review of last experimental studies on thermal conductivity of nanofluids. J Therm Anal Calorim. 2015;122(2):863–84.CrossRefGoogle Scholar
  4. 4.
    Pang C, Lee J, Hong H, Kang Y. Heat conduction mechanism in nanofluids. J Mech Sci Technol. 2014;28:2925–36.CrossRefGoogle Scholar
  5. 5.
    Aybar HŞ, Sharifpur M, Azizian MR, Mehrabi M, Meyer JP. A review of thermal conductivity models for nanofluids. Heat Transf Eng. 2015;36:1085–110.CrossRefGoogle Scholar
  6. 6.
    Tertsinidou G, Assael MJ, Wakeham WA. The apparent thermal conductivity of liquids containing solid particles of nanometer dimensions: a critique. Int J Thermophys. 2015;36:1367–95.CrossRefGoogle Scholar
  7. 7.
    Maxwell JC. A treatise on electricity and magnetism. Oxford: Clarendon; 1892.Google Scholar
  8. 8.
    Bruggeman DAG. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann Phys Berlin. 1935;416:636–64.CrossRefGoogle Scholar
  9. 9.
    Hamilton RL, Crosser OK. Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam. 1962;1:27–40.CrossRefGoogle Scholar
  10. 10.
    Jang SP, Choi SUS. Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett. 2004;84:4316–8.CrossRefGoogle Scholar
  11. 11.
    Koo J, Kleinstreuer C. A new thermal conductivity model for nanofluids. J Nanopart Res. 2004;6:577–88.CrossRefGoogle Scholar
  12. 12.
    Kumar DH, Patel HE, Kumar VRR, Sundararajan T, Pradeep T, Das SK. Model for heat conduction in nanofluids. Phys Rev Lett. 2004;93:144301.CrossRefGoogle Scholar
  13. 13.
    Prasher R, Bhattacharya P, Phelan PE. Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys Rev Lett. 2005;94:025901.CrossRefGoogle Scholar
  14. 14.
    Prasher R, Bhattacharya P, Phelan PE, Prasher R, Bhattacharya P. Brownian-motion-based convective–conductive model for the effective thermal conductivity of nanofluids. J Heat Transf. 2006;128:588–95.CrossRefGoogle Scholar
  15. 15.
    Yang B. Thermal conductivity equations based on Brownian motion in suspensions of nanoparticles (nanofluids). J Heat Transf. 2008;130:156–61.Google Scholar
  16. 16.
    Pang C, Jung JY, Yong TK. Aggregation based model for heat conduction mechanism in nanofluids. Int J Heat Mass Transf. 2014;72:392–9.CrossRefGoogle Scholar
  17. 17.
    Hassani S, Saidur R, Mekhilef S, Hepbasli A. A new correlation for predicting the thermal conductivity of nanofluids; using dimensional analysis. Int J Heat Mass Transf. 2015;90:121–30.CrossRefGoogle Scholar
  18. 18.
    Vajjha RS, Das DK. Experimental determination of thermal conductivity of three nanofluids and development of new correlations. Int J Heat Mass Transf. 2009;52:4675–82.CrossRefGoogle Scholar
  19. 19.
    Corcione M. Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Conv Manage. 2011;52:789–93.CrossRefGoogle Scholar
  20. 20.
    Saidur R, Leong KY, Mohammad HA. A review on applications and challenges of nanofluids. Renew Sust Energ Rev. 2011;15:1646–68.CrossRefGoogle Scholar
  21. 21.
    Jung JY, Oh HS, Kwak HY. Forced convective heat transfer of nanofluids in microchannels. Int J Heat Mass Transf. 2009;52:466–72.CrossRefGoogle Scholar
  22. 22.
    Li J, Kleinstreuer C. Thermal performance of nanofluid flow in microchannels. Int J Heat Fluid Flow. 2008;29:1221–32.CrossRefGoogle Scholar
  23. 23.
    Nan CW, Birringer R, Clarke DR, Gleiter H. Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys. 1997;81:6692–9.CrossRefGoogle Scholar
  24. 24.
    Brodkey RS, Kim DS, Sidner W. Fluid to particle heat transfer in a fluidized bed and to single particles. Int J Heat Mass Transf. 1991;34:2327–37.CrossRefGoogle Scholar
  25. 25.
    Chen G. Nanoscale energy transport and conversion: a parallel treatment of electrons, molecules, phonons, and photons. London: Oxford University Press; 2005.Google Scholar
  26. 26.
    Wilson O, Hu X, Cahill D, Braun P. Colloidal metal particles as probes of nanoscale thermal transport in fluids. Phys Rev B. 2002;66:224301.CrossRefGoogle Scholar
  27. 27.
    Incropera FP, Witt DPD. Fundamentals of heat and mass transfer. New York: Wiley; 1996.Google Scholar
  28. 28.
    Chon CH, Kihm KD, Lee SP, Choi SUS. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3), thermal conductivity enhancement. Appl Phys Lett. 2005;87:395–403.CrossRefGoogle Scholar
  29. 29.
    Patel HE, Sundararajan T, Das SK. An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids. J Nanopart Res. 2010;12:1015–31.CrossRefGoogle Scholar
  30. 30.
    Xuan YM, Li Q. Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow. 2000;21:58–64.CrossRefGoogle Scholar
  31. 31.
    Jin JY, Jing DW. A novel liquid optical filter based on magnetic electrolyte nanofluids for hybrid photovoltaic/thermal solar collector application. Sol Energy. 2017;155:51–61.CrossRefGoogle Scholar
  32. 32.
    Sengers JV, Watson JTR. Improved international formulations for the viscosity and thermal conductivity of water substance. J Phys Chem Ref Data. 1986;15:1291–314.CrossRefGoogle Scholar
  33. 33.
    Sheikholeslami M, Vajravelu K. Nanofluid flow and heat transfer in a cavity with variable magnetic field. Appl Math Comput. 2017;298:272–82.Google Scholar
  34. 34.
    Hatami M, Song D, Jing D. Optimization of a circular-wavy cavity filled by nanofluid under the natural convection heat transfer condition. Int J Heat Mass Transf. 2016;98:758–67.CrossRefGoogle Scholar
  35. 35.
    Lee JH, Hwang KS, Jang SP, Lee BH, Kim JH, Choi SUS, Choi CJ. Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. Int J Heat Mass Transf. 2008;51:2651–6.CrossRefGoogle Scholar
  36. 36.
    Reddy MCS, Rao VV. Experimental studies on thermal conductivity of blends of ethylene glycol-water-based TiO2 nanofluids. Int Commun Heat Mass Transf. 2013;46:31–6.CrossRefGoogle Scholar
  37. 37.
    Kazemibeydokhti A, Heris SZ, Moghadam N, Shariatiniasar M, Hamidi AA. Experimental investigation of parameters affecting nanofluid effective thermal conductivity. Chem Eng Commun. 2013;201:1443–4.Google Scholar
  38. 38.
    Mintsa HA, Roy G, Cong TN, Doucet D. New temperature dependent thermal conductivity data for water-based nanofluids. Int J Therm Sci. 2009;48:363–71.CrossRefGoogle Scholar
  39. 39.
    Jing DW, Jing L, Liu H, Yao S, Guo LJ. Photocatalytic hydrogen production from refinery gas over a fluidized-bed reactor II: parametric study. Ind Eng Chem Res. 2013;52:1992–9.CrossRefGoogle Scholar
  40. 40.
    Hong RY, Zhang SZ, Han YP, Li HZ, Ding J, Zheng Y. Preparation, characterization and application of bilayer surfactant-stabilized ferrofluids. Powder Technol. 2006;170:1–11.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Multiphase Flow in Power Engineering and International Research Center for Renewable EnergyXi’an Jiaotong UniversityXi’anChina

Personalised recommendations