Skip to main content
Log in

First and second laws of thermodynamics analysis of nanofluid flow inside a heat exchanger duct with wavy walls and a porous insert

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper investigates the combined effects of using nanofluid, a porous insert and corrugated walls on heat transfer, pressure drop and entropy generation inside a heat exchanger duct. A series of numerical simulations are conducted for a number of pertinent parameters. It is shown that the waviness of the wall destructively affects the heat transfer process at low wave amplitudes and that it can improve heat convection only after exceeding a certain amplitude. Further, the pressure drop in the duct is found to be strongly influenced by the wave amplitude in a highly non-uniform way. The results, also, show that the second law and heat transfer performances of the system improve considerably by thickening the porous insert and decreasing its permeability. Yet, this is associated with higher pressure drops. It is argued that the hydraulic, thermal and entropic behaviours of the system are closely related to the interactions between a vortex formation near the wavy walls and nanofluid flow through the porous insert. Viscous irreversibilities are shown to be dominant in the core region of duct where the porous insert is placed. However, in the regions closer to the wavy walls, thermal entropy generation is the main source of irreversibility. A number of design recommendations are made on the basis of the findings of this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

α :

Amplitude of wave (m)

C F :

Forchheimer coefficient (–)

C p :

Specific heat at constant pressure (J kg−1 K−1)

Da :

Darcy number (–) \( \left( {Da = \frac{K}{{H^{2} }}} \right) \)

f :

Friction factor (–)

h :

Heat transfer coefficient (W m−2 K−1)

H :

Average distance between corrugated walls (m)

H P :

Porous layer thickness (m)

k :

Thermal conductivity (W m−1 K−1)

K :

Permeability of porous material (m2)

L :

Heater length (m)

L w :

Wavelength of the corrugated walls (m)

N :

Dimensionless average entropy generation rate (–)

N g :

Dimensionless local volumetric entropy generation rate (–)

Nu :

Nusselt number (–)

p :

Pressure (Pa)

P :

Non-dimensional pressure

R k :

Thermal conductivity ratio (–)

Re :

Reynolds number (–)

S :

Dimensionless porous layer thickness (–)\( \left( {S = \frac{{H_{P} }}{H}} \right) \)

S gen :

Local volumetric entropy generation rate (W m−3 K−1)

T :

Temperature (K)

u, v :

Velocity component in x and y directions, respectively (ms−1)

U, V :

Non-dimensional velocity components (–)

U in :

Inlet velocity (ms−1)

x, y :

Rectangular coordinates components (m)

X, Y :

Non-dimensional rectangular coordinates components (–)

α :

Non-dimensional wave amplitude () \( \left( {\alpha = \frac{a}{H}} \right) \)

\( \varepsilon \) :

Porosity (–)

\( \Delta P^{*} \) :

Dimensionless pressure drop (–) \( \left( {\Delta P^{*} = \frac{\Delta P}{{\rho U_{\text{in}}^{2} }}} \right) \)

\( \mu \) :

Dynamic viscosity (kg m−1 s−1)

\( \nu \) :

Kinematic viscosity (m2 s−1)

\( \theta \) :

Dimensionless temperature (–)

\( \rho \) :

Density of the fluid (kg m−3)

\( \varphi \) :

Volume fraction of nanoparticles

ave :

Average value

eff :

Effective

nf :

Nanofluid

in :

Inlet

w :

Wall

x:

Local value

References

  1. Tian Y, Zhao CY. A review of solar collectors and thermal energy storage in solar thermal applications. Appl Energy. 2013;104:538–53.

    Article  CAS  Google Scholar 

  2. Bisht VS, Patil AK, Gupta A. Review and performance evaluation of roughened solar air heaters. Renew Sust Energ Rev. 2018;81:954–77.

    Article  Google Scholar 

  3. Thakur DS, Khan MK, Pathak M. Solar air heater with hyperbolic ribs: 3D simulation with experimental validation. Renew Energ. 2017;113:357–68.

    Article  Google Scholar 

  4. Rashidi S, Esfahani JA, Rashidi A. A review on the applications of porous materials in solar energy systems. Renew Sust Energ Rev. 2017;73:1198–210.

    Article  CAS  Google Scholar 

  5. Meibodi SS, Kianifar A, Mahian O, Wongwises S. Second law analysis of a nanofluid-based solar collector using experimental data. J Therm Anal Calorim. 2016;126:617–25.

    Article  CAS  Google Scholar 

  6. Esfe MH, Behbahani PM, Arani AAA, Sarlak MR. Thermal conductivity enhancement of SiO2–MWCNT (85: 15%)–EG hybrid nanofluids. J Therm Anal Calorim. 2017;128:249–58.

    Article  CAS  Google Scholar 

  7. Rashidi S, Mahian O, Languri EM. Applications of nanofluids in condensing and evaporating systems. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6773-7.

    Article  Google Scholar 

  8. Menasria F, Zedairia M, Moummi A. Numerical study of thermohydraulic performance of solar air heater duct equipped with novel continuous rectangular baffles with high aspect ratio. Energy. 2017;133:593–608.

    Article  CAS  Google Scholar 

  9. Saravanan A, Senthilkumaar JS, Jaisankar S. Performance assessment in V-trough solar water heater fitted with square and V-cut twisted tape inserts. Appl Therm Eng. 2016;102:476–86.

    Article  Google Scholar 

  10. Priyam A, Chand P. Thermal and thermohydraulic performance of wavy finned absorber solar air heater. Sol Energy. 2016;130:250–9.

    Article  Google Scholar 

  11. Milani Shivan K, Ellahi R, Mamourian M, Moghiman M. Effects of wavy surface characteristics on natural convection heat transfer in a cosine corrugated square cavity filled with nanofluid. Int J Heat Mass Transf. 2017;107:1110–8.

    Article  CAS  Google Scholar 

  12. Ellahi R, Tariq MH, Hassan M, Vafai K. On boundary layer nano-ferroliquid flow under the influence of low oscillating stretchable rotating disk. J Mol Liq. 2017;229:339–45.

    Article  CAS  Google Scholar 

  13. Milani Shirvan K, Mamourian M, Mirzakhanlari S, Ellahi R. Numerical investigation of heat exchanger effectiveness in a double pipe heat exchanger filled with nanofluid: a sensitivity analysis by response surface methodology. Powder Technol. 2017;313:99–111.

    Article  CAS  Google Scholar 

  14. Hassan M, Zeeshan A, Majeed A, Ellahi R. Particle shape effects on ferrofuids flow and heat transfer under influence of low oscillating magnetic field. J Magn Magn Mater. 2017;443:36–44.

    Article  CAS  Google Scholar 

  15. Ijaz N, Zeeshan A, Bhatti MM, Ellahi R. Analytical study on liquid-solid particles interaction in the presence of heat and mass transfer through a wavy channel. J Mol Liq. 2018;250:80–7.

    Article  CAS  Google Scholar 

  16. Ellahi R, Hassan M, Zeeshan A, Khan AA. The shape effects of nanoparticles suspended in HFE-7100 over wedge with entropy generation and mixed convection. App Nanosci. 2016;6:641–51.

    Article  CAS  Google Scholar 

  17. Ellahi R, Hassan M, Zeeshan A. Aggregation effects on water base Al2O3—nanofluid over permeable wedge in mixed convection. Asia-Pac J Chem Eng. 2016;11:179–86.

    Article  CAS  Google Scholar 

  18. Ellahi R, Zeeshan A, Hassan M. Particle shape effects on Marangoni convection boundary layer flow of a nanofluid. Int. J. Numer. Methods Heat Fluid Flow. 2016;26:2160-2174.

  19. Sheikholeslami M, Zaigham Zia QM, Ellahi R. Influence of induced magnetic field on free convection of nanofluid considering Koo-Kleinstreuer-Li (KKL) correlation. Appl Sci. 2016;6:1–11.

    Article  CAS  Google Scholar 

  20. Akbarzadeh M, Rashidi S, Bovand M, Ellahi R. A sensitivity analysis on thermal and pumping power for the flow of nanofluid inside a wavy channel. J Mol Liq. 2016;220:1–13.

    Article  CAS  Google Scholar 

  21. Ganji DD, Malvandi A. Heat transfer enhancement using nanofluid flow in microchannels: simulation of heat and mass transfer. William Andrew, 2016.

  22. Hussein AM, SharmaKV, Bakar RA, Kadirgama K. A review of forced convection heat transfer enhancement and hydrodynamic characteristics of a nanofluid. Renew Sust Energ Rev. 2014;29:734-743.

  23. Wu JM, Zhao J. A review of nanofluid heat transfer and critical heat flux enhancement—research gap to engineering application. Prog Nucl Energ. 2013;66:13–24.

    Article  CAS  Google Scholar 

  24. Michael JJ, Iniyan S. Performance of copper oxide/water nanofluid in a flat plate solar water heater under natural and forced circulations. Energ Convers Manage. 2015;95:160–9.

    Article  CAS  Google Scholar 

  25. Bovand M, Rashidi S, Ahmadi G, Esfahani JA. Effects of trap and reflect particle boundary conditions on particle transport and convective heat transfer for duct flow - A two-way coupling of Eulerian-Lagrangian model. Appl Therm Eng. 2016;108:368–77.

    Article  CAS  Google Scholar 

  26. Nield D, Bejan A. Convection in porous media. springer, New York, 2017.

  27. Shokouhmand H, Jam F, Salimpour MR. The effect of porous insert position on the enhanced heat transfer in partially filled channels. Int Commun Heat Mass Transf. 2011;38:1162–7.

    Article  Google Scholar 

  28. Maerefat M, Mahmoudi SY, Mazaheri K. Numerical simulation of forced convection enhancement in a pipe by porous inserts. Heat Transfer Eng. 2011;32:45–56.

    Article  CAS  Google Scholar 

  29. Torabi M, Karimi N, Zhang K. Heat transfer and second law analyses of forced convection in a channel partially filled by porous media and featuring internal heat sources. Energy. 2015;93:106–27.

    Article  Google Scholar 

  30. Karimi N, Agbo D, Talat Khan A, Younger PL. On the effects of exothermicity and endothermicity upon the temperature fields in a partially-filled porous channel. Int J Therm Sci. 2015;96:128–48.

    Article  Google Scholar 

  31. Dickson C, Torabi M, Karimi N. First and second law analysis of nanofluid convection through a porous channel-The effects of partial filling and internal heat sources. Appl Therm Eng. 2016;103:459–80.

    Article  CAS  Google Scholar 

  32. Torabi M, Dickson C, Karimi N. Theoretical investigation of entropy generation and heat transfer by forced convection of copper-water nanofluid in a porous channel- Local thermal non-equilibrium and partial filling effects. Powder Technol. 2016;301:234–54.

    Article  CAS  Google Scholar 

  33. Siavashi M, Talesh Bahrami HR, Saffari H. Numerical investigation of flow characteristics, heat transfer and entropy generation of nanofluid flow inside an annular pipe partially or completely filled with porous media using two-phase mixture model. Energy. 2015;93:2451–66.

    Article  CAS  Google Scholar 

  34. Mahmud S, Das PK, Hyder N, Sadrul Islam AKM. Free convection in an enclosure with vertical wavy walls. Int J Therm Sci. 2002;41:440–6.

    Article  Google Scholar 

  35. Mahmud S, Sadrul Islam AKM. Laminar free convection and entropy generation inside an inclined wavy enclosure. Int J Therm Sci. 2003;42:1003–12.

    Article  Google Scholar 

  36. Mahmud S, Fraser RA. Free convection and entropy generation inside a vertical inphase wavy cavity. Int Commun Heat Mass Transf. 2004;31:455–66.

    Article  Google Scholar 

  37. Rush TA, Newell TA, Jacobi AM. An experimental study of flow and heat transfer in sinusoidal wavy passages. Int J Heat Mass Transf. 1999;42:1541–53.

    Article  CAS  Google Scholar 

  38. Wang CC, Chen CK. Forced convection in a wavy-wall channel. Int J Heat Mass Transf. 2002;45:2587–95.

    Article  Google Scholar 

  39. Castellões FV, Quaresma JNN, Cotta RM. Convective heat transfer enhancement in low Reynolds number flows with wavy walls. Int J Heat Mass Transf. 2010;53:2022–34.

    Article  CAS  Google Scholar 

  40. Heidary H, Kermani MJ. Effect of nano-particles on forced convection in sinusoidal-wall channel. Int Commun Heat Mass Trans. 2010;37:1520–7.

    Article  CAS  Google Scholar 

  41. Heidary H, Kermani MJ. Heat transfer enhancement in a channel with block(s) effect and utilizing Nano-fluid. Int J Therm Sci. 2012;57:163–71.

    Article  CAS  Google Scholar 

  42. Rashidi MM, Hosseini A, Pop I, Kumar S, Freidoonimehr N. Comparative numerical study of single and two-phase models of nanofluid heat transfer in wavy channel. Appl Math Mech-Engl. 2014;35:831–48.

    Article  Google Scholar 

  43. Ahmed MA, Shuai NH, Yusoff MZ. Numerical investigations on the heat transfer enhancement in a wavy channel using nanofluid. Int J Heat Mass Transf. 2012;55:5891–8.

    Article  CAS  Google Scholar 

  44. Torabi M, Zhang K, Karimi N, Peterson GP. Entropy generation in thermal systems with solid structures-a concise review. Int J Heat Mass Transf. 2016;97:917–31.

    Article  Google Scholar 

  45. Torabi M, Karimi N, Peterson GP. Challenges and progress on modeling of entropy generation in porous media: a review. Int J Heat Mass Transf. 2017;114:31–46.

    Article  Google Scholar 

  46. Mahian O, Kianifar A, Kleinstreuer C, Al-Nimr MA, Pop I, Sahin AZ, Wongwises S. A review of entropy generation in nanofluid flow. Int J Heat Mass Transf. 2013;65:514–32.

    Article  CAS  Google Scholar 

  47. Ko TH. Numerical analysis of entropy generation and optimal Reynolds number for developing laminar forced convection in double-sine ducts with various aspect ratios. Int J Heat Mass Transf. 2006;49:718–26.

    Article  Google Scholar 

  48. Esfahani JA, Akbarzadeh M, Rashidi S, Rosen MA, Ellahi R. Influences of wavy wall and nanoparticles on entropy generation over heat exchanger plate. Int J Heat Mass Transf. 2017;109:1162–71.

    Article  CAS  Google Scholar 

  49. Albojamal A, Vafai K. Analysis of single phase, discrete and mixture models, in predicting nanofluid transport. Int J Heat Mass Transf. 2017;114:225–37.

    Article  CAS  Google Scholar 

  50. Givler RC, Altobelli SA. A determination of the effective viscosity for the Brinkmane-Forchheimer flow model. J Fluid Mech. 1994;258:355–70.

    Article  CAS  Google Scholar 

  51. Yang C, Nakayama A, Liu W. Heat transfer performance assessment for forced convection in a tube partially filled with a porous medium. Int J Therm Sci. 2012;54:98–108.

    Article  Google Scholar 

  52. Lee DY, Vafai K. Analytical characterization and conceptual assessment of solid and fluid temperature differentials in porous media. Int J Heat Mass Transf. 1999;42:423–35.

    Article  CAS  Google Scholar 

  53. Minkowycz WJ, Haji-Sheikh A, Vafai K. On departure from local thermal equilibrium in porous media due to a rapidly changing heat source: the Sparrow number. Int J Heat Mass Transf. 1999;42:3373–85.

    Article  CAS  Google Scholar 

  54. Valipour MS, Masoodi R, Rashidi S, Bovand M, Mirhosseini M. A numerical study on convection around a square cylinder using Al2O3-H2O nanofluid. Therm Sci. 2014;18:1305–14.

    Article  Google Scholar 

  55. Zhou SQ, Ni R. Measurement of the specific heat capacity of water-based Al2O3 nanofluid. Appl Phys Lett. 2008;92:093123.

    Article  CAS  Google Scholar 

  56. Masoumi N, Sohrabi N, Behzadmehr A. A new model for calculating the effective viscosity of nanofluids. J Phys D Appl Phys. 2009;42:055501.

    Article  CAS  Google Scholar 

  57. Chon CH, Kihm KD, Lee SP, Choi SU. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett. 2005;87:153107.

    Article  CAS  Google Scholar 

  58. Patankar SV. Numerical heat transfer and fluid flow. New York: Hemisphere; 1980.

    Google Scholar 

  59. Ahmed MA, Yusoff MZ, Ng KC, Shuaib NH. Numerical and experimental investigations on the heat transfer enhancement in corrugated channels using SiO2-water nanofluid. Case Studies in Thermal Engineering. 2015;6:77–99.

    Article  Google Scholar 

  60. Dukhan N, Bagcı O, Ozdemir M. Thermal development in open-cell metal foam: an experiment with constant wall heat flux. Int J Heat Mass Transf. 2015;85:852–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

N. Karimi acknowledges the financial support by EPSRC through Grant No. EP/N020472/1 (Therma-pump).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rashidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbarzadeh, M., Rashidi, S., Karimi, N. et al. First and second laws of thermodynamics analysis of nanofluid flow inside a heat exchanger duct with wavy walls and a porous insert. J Therm Anal Calorim 135, 177–194 (2019). https://doi.org/10.1007/s10973-018-7044-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7044-y

Keywords

Navigation