Journal of Thermal Analysis and Calorimetry

, Volume 132, Issue 2, pp 1039–1053 | Cite as

Investigation into the physical–chemical properties of chemically pretreated sugarcane bagasse

  • Glauber Cruz
  • Patrícia A. Santiago
  • Carlos E. M. Braz
  • Paulo SeleghimJr.
  • Paula Manoel Crnkovic
Article

Abstract

Enzymatic hydrolysis is one of the major steps involved in the conversion of sugarcane bagasse into ethanol. Pretreatments break down macrostructures in order to improve the enzyme access to the targeted glycosidic bonds. This study reports on the use of thermoanalytic techniques together with other different techniques for the verification of the structural and morphological changes occurred in sugarcane bagasse subjected to acid and alkaline pretreatments. The techniques evaluated differences in the BET and BJH surface areas, diameter and pore volume investigated by porosimetry, scanning electron microscopy and wettability. Thermal analysis (TG/DTG and DTA) was also used to evaluate the thermal degradation of hemicelluloses, cellulose and lignin contents that remained in the samples after pretreatments. The results show that chemical pretreatments were effective in the degradation of lignocellulosic samples and significant morphological changes occurred after the pretreatments. Acid and alkaline pretreatments caused an increase in the surface area, diameter and volume of pores. Wettability also revealed important effects regarding surface changes of the biomasses. In summary, all tested pretreatments were effective to chemically degrade the macrostructures of sugarcane bagasse that hinder enzymatic hydrolysis in, for instance, the second-generation ethanol production.

Graphical Abstract

Keywords

Bioethanol production Chemical pretreatment Enzymatic hydrolysis Lignocellulosic biomass Thermal analysis Surface area 

Notes

Acknowledgements

The authors gratefully acknowledge CAPES (DS00011/07-0) and FAPESP (2010/20681-4 and 2012/00639-2) for the financial support, Thermal Engineering and Fluids Laboratory (LETeF) from University of São Paulo (USP), Dra. Adriana Faria de Azevedo (National Institute for Space Research—INPE) for the Wettability analysis, and Angela Pregnolato Giampedro for the English language review.

References

  1. 1.
    Mothé CG, Miranda IC. Characterization of sugarcane and coconut fibers by thermal analysis and FTIR. J Therm Anal Calorim. 2009;97:661–5.CrossRefGoogle Scholar
  2. 2.
    Menon V, Rao M. Trends in bioconversion of lignocellulose: biofuels, platform chemicals and biorefinery concept. Prog Energy Combust Sci. 2012;38:522–50.CrossRefGoogle Scholar
  3. 3.
    Sartori MMP, Florentino HO, Basta C, Leão AL. Determination of the optimal quantity of crop residues for energy in sugarcane crop management using linear programming in variety selection and planting strategy. Energy. 2001;26:1031–40.CrossRefGoogle Scholar
  4. 4.
    Satori MMP, Florentino HO. Energy balance optimization of sugarcane crop residual biomass. Energy. 2007;32:1745–8.CrossRefGoogle Scholar
  5. 5.
    Slade R, Saunders R, Gross R, Bauen A. Energy from biomass: the size of the global resource. Centre for Energy Policy and Technology: Imperial College, London; 2011. p. 120.Google Scholar
  6. 6.
    Food and Agriculture Organization of the United Nations. FAO statistical yearbook. 2013. http://www.fao.org. Accessed 28 June 2017.
  7. 7.
    Silva CG. Renewable energies: choosing the best options. Energy. 2010;35:3179–93.CrossRefGoogle Scholar
  8. 8.
    Cortez LAB, Leal MRLV, Nassar AM, Moreira MMR, Feldman S, Taube-Netto M, Silva A. Necessidade de terras para a produção de etanol no Brasil. In: Bioetanol de cana-de-açúcar: P&D para produtividade e sustentabilidade. São Paulo: Blucher; 2010. p. 301–16.Google Scholar
  9. 9.
    Leal MRLV. Evolução tecnológica do processamento da cana-de-açúcar para etanol e energia elétrica. In: Bioetanol de cana-de-açúcar: P&D para produtividade e sustentabilidade. São Paulo: Blucher; 2010. p. 561–76.Google Scholar
  10. 10.
    Rezende CA, et al. Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnol Biofuels. 2011;4:1–18.CrossRefGoogle Scholar
  11. 11.
    Yu H, et al. Comparative study of alkaline hydrogen peroxide and organosolv pretreatments of sugarcane bagasse to improve the overall sugar yield. Bioresour Technol. 2015;187:161–6.CrossRefGoogle Scholar
  12. 12.
    Masarin F, et al. Chemical composition and enzymatic digestibility of sugarcane clones selected for varied lignin content. Biotechnol Biofuels. 2011;4:1–10.CrossRefGoogle Scholar
  13. 13.
    Betancur GJV, Pereira N Jr. Sugarcane as feedstock for second generation ethanol production. Part I: diluted acid pretreatment optimization. Electron J Biotechnol. 2010;13:1–9.Google Scholar
  14. 14.
    Chang VS, Holtzapple MT. Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol. 2000;84–86:5–37.CrossRefGoogle Scholar
  15. 15.
    Fingueret J, Meirelles AJA, Guirardello R, Costa AC. Fermentation, hydrolysis, and distillation. In: Biomass for energy. São Paulo: University of Campinas; 2008. p. 433–73 (in Portuguese).Google Scholar
  16. 16.
    Taherzadeh MJ, Karimi K. Acid-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources. 2007;2:472–99.Google Scholar
  17. 17.
    Mohan D, Pittman CU Jr, Steele PH. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuel. 2006;20:848–89.CrossRefGoogle Scholar
  18. 18.
    Rabelo SC. Evaluation and optimization of pretreatments and enzymatic hydrolysis of the sugarcane bagasse for second generation ethanol production. Ph.D. thesis, School of Chemical Engineering, University of Campinas; 2010. p. 450 (in Portuguese).Google Scholar
  19. 19.
    Lei H, Cybulska I, Julson J. Hydrothermal pretreatment of lignocellulosic biomass and kinetics. J Sustain Bioenergy Syst. 2013;3:250–9.CrossRefGoogle Scholar
  20. 20.
    Nitsos CK, Matis KA, Triantafyllidis KS. Optimization of hydrothermal pretreatment of lignocellulosic biomass in the bioethanol production process. Chem Sustain Chem. 2013;6:110–2.CrossRefGoogle Scholar
  21. 21.
    Hendriks ATWM, Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol. 2009;100:10–8.CrossRefGoogle Scholar
  22. 22.
    Banerjee G, et al. Rapid optimization of enzyme mixtures for deconstruction of diverse pretreatment/biomass feedstock combinations. Biotechnol Biofuels. 2010;3:1–15.CrossRefGoogle Scholar
  23. 23.
    Rocha GJM, Martin C, Soares IB, Maior AMS, Baudel HM, Abreu CAM. Dilute mixed-acid pretreatment of sugarcane bagasse for ethanol production. Biomass Bioenergy. 2011;35:663–70.CrossRefGoogle Scholar
  24. 24.
    Cara C, Ruiz E, Oliva JM, Sáez F, Castro E. Conversion of olive tree biomass into fermentable sugars by dilute acid pretreatment and enzymatic saccharification. Bioresour Technol. 2008;99:1869–76.CrossRefGoogle Scholar
  25. 25.
    Guo J, Catchmark JM. Surface area and porosity of acid hydrolyzed cellulose nanowhiskers and cellulose produced by Gluconacetobacter xylinus. Carbohydr Polym. 2012;87:1026–37.CrossRefGoogle Scholar
  26. 26.
    Fan LT, Lee YH, Beardmore DR. The influence of major structural features of cellulose on rate of enzymatic hydrolysis. Biotechnol Bioeng. 1981;23:419–24.CrossRefGoogle Scholar
  27. 27.
    Webb PA, Orr C. Analytical methods in fine particle technology. 1st ed. Norcross: Micromeritics Instrument Corporation; 1997. p. 301.Google Scholar
  28. 28.
    Gregg SJ, Sing KSW. Adsorption, surface area and porosity. 2nd ed. Cambridge: Academic Press; 1982. p. 303.Google Scholar
  29. 29.
    Brown ME. Introduction to thermal analysis—techniques and applications. 1st ed. New York: Chapman and Hall; 1988. p. 211.CrossRefGoogle Scholar
  30. 30.
    Sasmal S, Goud VV, Mohanty K. Characterization of biomasses available in the region of North-East India for production fuels. Biomass Bioenergy. 2012;45:212–20.CrossRefGoogle Scholar
  31. 31.
    Azevedo AF, Matsushima JT, Vicentin FC, Baldan MR, Ferreira NG. Surface characterization of NCD films as a function of sp2/sp3 carbon and oxygen content. Appl Surf Sci. 2009;255:6565–70.CrossRefGoogle Scholar
  32. 32.
    Krüss Information Database. Installation and operation V1-02 Equipment handbook. Hamburg: Krüss; 2005. p. 167.Google Scholar
  33. 33.
    Demirbas A. Combustion characteristics of different biomass fuels. Prog Energy Combust Sci. 2004;30:219–30.CrossRefGoogle Scholar
  34. 34.
    Ramajo-Escalera B, Espina A, García JR, Sosa-Arnao JH, Nebra SA. Model-free kinetics applied to sugarcane bagasse combustion. Thermochim Acta. 2006;448:111–6.CrossRefGoogle Scholar
  35. 35.
    Munir S, Daood SS, Nimmo W, Cunliffe AM, Gibbs BM. Thermal analysis and devolatilization kinetics of cotton stalk, sugarcane bagasse and shea meal under nitrogen and air atmospheres. Bioresour Technol. 2009;100:1413–8.CrossRefGoogle Scholar
  36. 36.
    Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86:1781–8.CrossRefGoogle Scholar
  37. 37.
    Chen WH, Tu YJ, Sheen HK. Impact of dilute acid pretreatment on the structure of bagasse for bioethanol production. Int J Energy Res. 2010;34:265–74.CrossRefGoogle Scholar
  38. 38.
    Sanchez OJ, Cardona CA. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol. 2008;99:5270–95.CrossRefGoogle Scholar
  39. 39.
    Zheng Y, Lee C, Yu C, Cheng YS, Zhang R, Jenkins BM. Dilute acid pretreatment and fermentation of sugar beet pulp to ethanol. Appl Energy. 2013;105:1–7.CrossRefGoogle Scholar
  40. 40.
    Mansaray KG, Ghaly AE. Thermal degradation of rice husks in nitrogen atmosphere. Bioresour Technol. 1998;65:13–20.CrossRefGoogle Scholar
  41. 41.
    Diaz PR, Semet VZ. Studies on thermal decomposition and combustion mechanism of bagasse under non-isothermal conditions. Thermochim Acta. 1985;93:349–52.CrossRefGoogle Scholar
  42. 42.
    Guimarães JL, Frollini E, Silva CG, Wypych F, Satyanarayana KG. Characterization of banana, sugarcane bagasse and sponge gourd fibers of Brazil. Ind Crop Prod. 2009;30:407–15.CrossRefGoogle Scholar
  43. 43.
    Jenkins BM, Baxter LL, Miles TR Jr, Miles TR. Combustion properties of biomass. Fuel Process Technol. 1998;54:17–46.CrossRefGoogle Scholar
  44. 44.
    Nassar MM, Ashour EA, Wahid SS. Thermal characteristics of bagasse. J Appl Polym Sci. 1996;61:885–90.CrossRefGoogle Scholar
  45. 45.
    Hu S, Jess A, Xu M. Kinetic study of Chinese biomass slow pyrolysis: comparison of different kinetic models. Fuel. 2007;86:2778–88.CrossRefGoogle Scholar
  46. 46.
    Koo BW, Kim HY, Park N, Lee SM, Yeo H, Choi IG. Organosolv pretreatment of Liriodendron tulipifera and simultaneous saccharification and fermentation for bioethanol production. Biomass Bioenergy. 2011;35:1833–40.CrossRefGoogle Scholar
  47. 47.
    San Miguel G, Domínguez MP, Hernández M, Sanz-Pérez F. Characterization and potential applications of solid particles produced at a biomass gasification plant. Biomass Bioenergy. 2012;47:134–44.CrossRefGoogle Scholar
  48. 48.
    Pécora AAB, Ávila I, Lira CS, Cruz G, Crnkovic PM. Prediction of combustion process in fluidized bed based on particles physical-chemical properties of biomass and their hydrodynamic behaviors. Fuel Process Technol. 2014;124:188–97.CrossRefGoogle Scholar
  49. 49.
    Rouquerol F, Rouquerol J, Sing K. Adsorption by powders and porous solids: principles, methodology and applications. 1st ed. London: Academic Press; 1999. p. 467.Google Scholar
  50. 50.
    Yu CT, Chen WH, Men LC, Hwang WS. Microscopic structure features changes of rice straw treated by boiled acid solution. Ind Crop Prod. 2009;29:308–15.CrossRefGoogle Scholar
  51. 51.
    Wiman M, Dienes D, Hansen MAT, Van der Meulen T, Zacchi G, Lidén G. Cellulose accessibility determines the rate of enzymatic hydrolysis of steam-pretreated spruce. Bioresour Technol. 2012;126:208–15.CrossRefGoogle Scholar
  52. 52.
    Piccolo C, Wiman M, Bezzo F, Lidén G. Enzyme adsorption on SO2 catalyzed steam-pretreated wheat and spruce material. Enzyme Microb Technol. 2010;46:159–69.CrossRefGoogle Scholar
  53. 53.
    Allen T. Particle size measurement. 5th ed. London: Chapman and Hall; 1997. p. 525.Google Scholar
  54. 54.
    Baharoğlu M, Nemli G, Sari B, Bardak S, Ayrilmiş N. The influence of moisture content of raw material on the physical and mechanical properties, surface roughness, wettability, and formaldehyde emission of particleboard composite. Compos B Eng. 2012;43:2448–51.CrossRefGoogle Scholar
  55. 55.
    Ostrovskaya L, Perevertailo V, Ralchenko V, Saveliev A, Zhuravlev V. Wettability of nanocrystalline diamond films. Diam Relat Mater. 2007;16:2109–13.CrossRefGoogle Scholar
  56. 56.
    Zhou Y, et al. Control over the wettability of amorphous carbon films in a large range from hydrophilicity to super-hydrophobicity. Appl Surf Sci. 2006;253:2690–4.CrossRefGoogle Scholar
  57. 57.
    Kaibara Y, Sugata K, Tachiki M, Umezawa H, Kawarada H. Control wettability of the hydrogen-terminated diamond surface and the oxidized diamond surface using and atomic force microscope. Diam Relat Mater. 2003;12:560–4.CrossRefGoogle Scholar
  58. 58.
    Pinzari F, Ascarelli P, Cappelli E, Mattei G, Giorgi R. Wettability of HF-CVD diamond films. Diam Relat Mater. 2001;10:781–5.CrossRefGoogle Scholar
  59. 59.
    Maximova N, Österberg M, Laine J, Stenius P. The wetting and morphology of lignin adsorbed on cellulose fibers and mica. Colloid Surf A. 2004;239:65–75.CrossRefGoogle Scholar
  60. 60.
    Heiss-Blanquet S, Zheng D, Ferreira NL, Lapierre C, Baumberger S. Effect of pretreatment and enzymatic hydrolysis of what straw on cell wall composition, hydrophobicity and cellulase adsorption. Bioresour Technol. 2011;102:5938–46.CrossRefGoogle Scholar
  61. 61.
    Himmel ME, et al. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science. 2007;315:804–7.CrossRefGoogle Scholar
  62. 62.
    Eustathopoulos N, Nicholas MG, Drevet B. Wettability at high temperatures. 1st ed. Oxford: Pergamon; 1999. p. 419.Google Scholar
  63. 63.
    Novikov NV, Khandozhko SI, Perevertailo VM, Ostrovskaya LY, Gontar AG, Loginova OB. The wettability of aC: H films by solution of different physicochemical compositions. Diam Relat Mater. 1998;7:1263–6.CrossRefGoogle Scholar
  64. 64.
    Fuentes CA, et al. Wetting behavior and surface properties of technical bamboo fibers. Colloid Surf A. 2011;380:89–99.CrossRefGoogle Scholar
  65. 65.
    Driemeier C, Oliveira MM, Mendes FM, Gómez EO. Characterization of sugarcane bagasse powders. Powder Technol. 2011;214:111–6.CrossRefGoogle Scholar
  66. 66.
    Cao Y, Shibata S, Fukumoto I. Mechanical properties of biodegradable composites reinforced with bagasse fiber before and after alkali treatments. Compos A Appl Sci. 2006;37:423–9.CrossRefGoogle Scholar
  67. 67.
    Zabaniotu A, Stavropoulos G, Skoulou V. Activated carbon from olive kernels in a two-stage process: industrial improvement. Bioresour Technol. 2008;99:320–6.CrossRefGoogle Scholar
  68. 68.
    Vilay V, Mariatti M, Taib RM, Todo M. Effect of fiber surface treatment and fiber loading on the properties of bagasse fiber-reinforced unsaturated polyester composites. Compos Sci Technol. 2008;68:631–8.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Glauber Cruz
    • 1
    • 2
  • Patrícia A. Santiago
    • 2
  • Carlos E. M. Braz
    • 3
  • Paulo SeleghimJr.
    • 2
  • Paula Manoel Crnkovic
    • 2
  1. 1.Department of Mechanical EngineeringFederal University of MaranhãoSão LuísBrazil
  2. 2.Thermal Engineering and Fluids Laboratory, Department of Mechanical Engineering, Engineering School of São CarlosUniversity of São PauloSão CarlosBrazil
  3. 3.Department of ChemistryFederal University of São CarlosSão CarlosBrazil

Personalised recommendations