Journal of Thermal Analysis and Calorimetry

, Volume 133, Issue 1, pp 641–648 | Cite as

Investigation of the thermal behavior of inclusion complexes with antifungal activity

  • Fernando José de Lima Ramos Júnior
  • Karla Monik Alves da Silva
  • Deysiane Oliveira Brandão
  • José Venâncio Chaves Junior
  • Jonh Anderson Borges dos Santos
  • Fabrício Havy Dantas de Andrade
  • Rayanne Sales de Araújo Batista
  • Taynara Batista Lins
  • Damião Pergentino de Sousa
  • Ana Cláudia Dantas Medeiros
  • Marta Maria Conceição
  • Rui Oliveira Macêdo
  • Fábio Santos de Souza
Article
  • 36 Downloads

Abstract

The indiscriminate use of antifungal agents has led to the advancement of microorganisms tolerant to the various drugs known in the market. Therefore, the search for new compounds and new technologies capable of giving more stable formulations and better pharmacological activities is of paramount importance as an alternative for the development of new therapeutics. However, its effectiveness is directly related to the knowledge of its characteristics in the solid state. Thus, the objective of this work was evaluating the thermal behavior, physicochemical aspects and microbiological of the complexes of inclusion of β-cyclodextrin (BCD) and biphenyl-4-methyl carboxylate (B4CMET). Therefore, differential scanning calorimetry, thermogravimetry, Fourier-transformed infrared spectroscopy, X-ray diffraction and microbiological assay were used to generate robust fingerprint of the inclusion complexes. The results showed the formation of inclusion complexes of B4CMET with βCD, thereby stressing its greater stability and potential use as an antifungal agent against Candida spp. Thus, with thermoanalytical techniques it was possible to observe the increased thermal stability, with FTIR changes of characteristic bands were verified, with XRD the disappearance of diffraction peaks of the B4CMET was verified, and with the microbiological assay it was possible to visualize increased antifungal activity.

Keywords

β-Cyclodextrin Thermoanalytical techniques Antifungal agent Biphenyl-4-methyl carboxylate 

References

  1. 1.
    Ferronatto R, Marchesan ED, Pezenti E, Bednarski F, Onofre SB. Atividade antimicrobiana de óleos essenciais produzidos por Baccharis dracunculifolia D.C. e Baccharis uncinella D.C. (Asteraceae). Rev Bras Farmacogn. 2007;17:224–30.CrossRefGoogle Scholar
  2. 2.
    Deus RJA, Alves CN, Arruda MSP. Avaliação do efeito antifúngico do óleo resina e do óleo essencial de copaíba (Copaifera multijuga Hayne). Bras Pl Med. 2011;13:1–7.CrossRefGoogle Scholar
  3. 3.
    Maggio RM, Calvo NL, Vignaduzzo SE, Kaufman TS. Pharmaceutical impurities and degradation products: uses and applications of NMR techniques. J Pharm Biomed Anal. 2014;101:102–22.CrossRefGoogle Scholar
  4. 4.
    Koradia V, Diego HL, Frydenvang K, Ringkjøbing-Elema M, Bond A, Müllertz A, Rantanen J. Solid forms of amlodipine besylate: physicochemical, structural and thermodynamic characterization. Cryst Growth Des. 2010;10:5279–90.CrossRefGoogle Scholar
  5. 5.
    Moura EA, Correia LP, Pinto MF, Procópio JVV, Souza FS, Macedo RO. Thermal characterization of the solid state and raw material fluconazole by thermal analysis and pyrolysis coupled to GC/MS. J Therm Anal Calorim. 2010;100:289–93.CrossRefGoogle Scholar
  6. 6.
    Böer TM, Procópio JV, Nascimento TG, Macêdo RO. Correlation of thermal analysis and pyrolysis coupled to GC–MS in the characterization of tacrolimus. J Pharm Biomed. 2013;73:18–23.CrossRefGoogle Scholar
  7. 7.
    Daneluti ALM, Matos JR. Study of thermal behavior of phytic acid. Braz J Pharm Sci. 2013;49:275–83.CrossRefGoogle Scholar
  8. 8.
    Sangeetha MK, Mariappan M, Madhurambal G, Mojumdar SC. TG–DTA, XRD, SEM, EDX, UV, and FT-IR spectroscopic studies of l-valine thiourea mixed crystal. J Therm Anal Calorim. 2015;119:907–13.CrossRefGoogle Scholar
  9. 9.
    Lyra MAM, Alves LDS, Fontes DAF, Soares-Sobrinho JL, Rolim-Neto PJ. Ferramentas analíticas aplicadas à caracterização de complexos de inclusão fármaco-ciclodextrina. Rev Ciênc Farm Básica Apl. 2010;31:117–24.Google Scholar
  10. 10.
    Ford JL, Mann TE. Fast-scan DSC and its role in pharmaceutical physical form characterisation and selection. Adv Drug Deliv Rev. 2012;64:422–30.CrossRefGoogle Scholar
  11. 11.
    Guan Y, Wang C, Wang D, Dang G, Chen C, Zhou H, Zhao X. High transparent polyimides containing pyridine and biphenyl units: synthesis, thermal, mechanical, crystal and optical properties. Polymer. 2015;62:1–10.CrossRefGoogle Scholar
  12. 12.
    Silva Júnior WF, Pinheiro JGO, Pinheiro CDLFAM, Barbosa ALREG, Lima ES, Veiga Júnior VF, Silva Júnior AA, Aragão CFS, Lima AAN. Thermal behavior and thermal degradation kinetic parameters of triterpene α, β amyrin. J Therm Anal Calorim. 2017;127:1757–66.CrossRefGoogle Scholar
  13. 13.
    Yang H, Huang Z, Huang Y, Dong W, Pan Z, Wang L. Characterization of Chinese crude propolis by pyrolysis gaschromatography/mass spectrometry. J Anal Appl Pyrolysis. 2015;113:158–64.CrossRefGoogle Scholar
  14. 14.
    Tolu J, Gerber L, Boily J-F, Bindlera R. High-throughput characterization of sediment organic matter by pyrolysis–gas chromatography/mass spectrometry and multivariate curve resolution: a promising analytical tool in (paleo)limnology. Anal Chim Acta. 2015;880:93–102.CrossRefGoogle Scholar
  15. 15.
    Ge S, Xu Y, Tian Z, She S, Huang L, Zhang Z, Hu Y, Weng J, Cao M, Sheng L. Pyrolysis study of pectin by tunable synchrotron vacuum ultraviolet photoionization mass spectrometry. J Therm Anal Calorim. 2015;120:1399–1405.CrossRefGoogle Scholar
  16. 16.
    Kusch P, Rieser C, Knupp G, Mang T. Characterization of copolymers of methacrylic acid with poly(ethylene glycol) methyl ether methacrylate macromonomersby analytical pyrolysis–gas chromatography/mass spectrometry(Py–GC/MS). J Anal Appl Pyrolysis. 2015.  https://doi.org/10.1016/j.jaap.2015.03.003.Google Scholar
  17. 17.
    Vianna-Filho RP, Petkowicz CL, Silveira JL. Rheological characterization of O/W emulsions incorporated with neutral and charged polysaccharides. Carbohydr Polym. 2013;93:266–72.CrossRefGoogle Scholar
  18. 18.
    Amorim SR, Klier AH, Angelis LH. Controle de qualidade na indústria farmacêutica: identificação de substâncias por espectroscopia no infravermelho. Rev Bras Farm. 2013;94:234–42.Google Scholar
  19. 19.
    CLSI. Reference method for broth dilution antifungal susceptibility testing of yeasts. CLSI Document M27A3. 3 ed. v.28. n.14. Wayne, PA, USA, 2008.Google Scholar
  20. 20.
    Serafini MR, Menezes PP, Costa LP, Lima CM, Quintans LJ Jr, Cardoso JC, Matos JR, Soares-Sobrinho JL, Grangeiro S Jr, Nunes PS, Bonjadim LR, Araújo AAS. Interaction of p-cymene with b-cyclodextrin. J Therm Anal Calorim. 2012;109:951–5.CrossRefGoogle Scholar
  21. 21.
    Menezes PP, Serafini MR, Quintans-Júnior LJ, Silva GF, Oliveira JF, Carvalho FMS, Souza JCC, Matos JR, Alves PB, Matos IL, Hădărugă DI, Araújo AAS. Inclusion complex of (2)-linalool and b-cyclodextrin. J Therm Anal Calorim. 2014;115:2429–437.CrossRefGoogle Scholar
  22. 22.
    Abarca RL, Rodríguez FJ, Guarda A, Galotto MJ, Bruna JE. Characterization of beta-cyclodextrin inclusion complexes containing an essential oil component. Food Chem. 2016;196:968–75.CrossRefGoogle Scholar
  23. 23.
    Jadhav P, Pore Y. Physicochemical, thermodynamic and analytical studies on binary and ternary inclusion complexes of bosentan with hydroxypropyl-β-cyclodextrin. Bull Fac Pharm Cairo Univ. 2017;55:147–84.CrossRefGoogle Scholar
  24. 24.
    Xua J, Zhanga Y, Lia X, Zheng Y. Inclusion complex of nateglinide with sulfobutyl ether β-cyclodextrin: preparation, characterization and water solubility. J Mol Struct. 2017;1141:328–34.CrossRefGoogle Scholar
  25. 25.
    Cunha-Filho MSS, Sá-Barreto LCL. Utilização de ciclodextrinas na formação de complexos de inclusão de interesse farmacêutico. Rev Ciênc Farm Básica Apl. 2007;28:1–9.Google Scholar
  26. 26.
    Kfoury M, Sahraoui AL-H, Bourdon N, Laruelle F, Fontaine J, Auezova L, Greige-Gerges H, Fourmentin S. Solubility, photostability and antifungal activity of phenylpropanoids encapsulated in cyclodextrins. Food Chem. 2016;196:518–25.CrossRefGoogle Scholar
  27. 27.
    Zhang S, Zhang H, Xu Z, Wu M, Xia W, Zhang W. Chimonanthus praecox extract/cyclodextrin inclusion complexes: selective inclusion, enhancement of antioxidant activity and thermal stability. Ind Crop Prod. 2017;95:60–5.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Fernando José de Lima Ramos Júnior
    • 1
    • 2
  • Karla Monik Alves da Silva
    • 1
    • 2
  • Deysiane Oliveira Brandão
    • 1
    • 2
  • José Venâncio Chaves Junior
    • 2
  • Jonh Anderson Borges dos Santos
    • 2
  • Fabrício Havy Dantas de Andrade
    • 1
    • 2
  • Rayanne Sales de Araújo Batista
    • 2
  • Taynara Batista Lins
    • 2
  • Damião Pergentino de Sousa
    • 3
  • Ana Cláudia Dantas Medeiros
    • 4
  • Marta Maria Conceição
    • 5
  • Rui Oliveira Macêdo
    • 1
    • 2
  • Fábio Santos de Souza
    • 1
    • 2
  1. 1.Programa de Pós-graduação em Ciências Farmacêuticas, Departamento de Ciências FarmacêuticasUniversidade Federal de PernambucoRecifeBrasil
  2. 2.Laboratórios Unificados de Desenvolvimento e Ensaios de Medicamentos, Departamento de Ciências FarmacêuticasUniversidade Federal da ParaíbaJoão PessoaBrasil
  3. 3.Laboratório de Química Medicinal, Departamento de Ciências FarmacêuticasUniversidade Federal da ParaíbaJoão PessoaBrasil
  4. 4.Centro de Ciências Biológicas e da Saúde, Laboratório de Desenvolvimento e Ensaio de MedicamentosUniversidade Estadual da ParaíbaCampina GrandeBrasil
  5. 5.Centro de Tecnologia e Desenvolvimento RegionalUniversidade Federal da ParaíbaJoão PessoaBrasil

Personalised recommendations