Journal of Thermal Analysis and Calorimetry

, Volume 133, Issue 1, pp 189–197 | Cite as

About thermostability of biocompatible Ti–Zr–Ag–Pd–Sn amorphous alloys

  • Mircea Nicoara
  • Dragos Buzdugan
  • Cosmin Locovei
  • Traian Bena
  • Mihai Stoica


A new Ti-based amorphous alloy without any harmful additions of elements and supplementary Ag content was developed for applications in orthopedics and dentistry. Since complete elimination of toxic elements is reducing the glass-forming ability and direct casting of massive components is no longer possible, the new alloy was produced by melt spinning as thin ribbons, which could be subsequently processed by powder metallurgy. Investigations of X-ray diffraction and high-resolution transmission electron microscopy evidenced the fully amorphous structure of the new alloy. Differential scanning calorimetry was used to determine the crystallization point and the heating behavior at rates between 5 and 30 K min−1 in order to estimate by Kissinger’s method the activation energy for crystallization. Investigations evidence that the new Ti30Zr32Ag7Pd24Sn7 crystallizes at around 500 °C and the value of activation energy is relatively low in comparison with similar Ti-based alloys that were successfully processed by powder metallurgy; therefore, thermomechanical processing should be performed exclusively below 500 °C during short fabrication cycles, in order to preserve the amorphous structure.


Ti-based amorphous alloys Biocompatible materials Melt spinning Kissinger’s method Thermostability 



This work was supported by the German Academic Exchange Service (Deutscher Akademischer Austausch Dienst—DAAD).


  1. 1.
    Geetha M, Singh A, Asokamani R, Gogia A. Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci. 2009;54:397–425.CrossRefGoogle Scholar
  2. 2.
    Abdel-Hady MG, Niinomi M. Biocompatibility of Ti-alloys for long-term implantation. J Mech Behav Biomed Mater. 2013;20:407–15.CrossRefGoogle Scholar
  3. 3.
    Basu B, Katti DS, Kumar A. Advanced biomaterials—fundamentals, processing, and applications. Hoboken: Wiley; 2009.CrossRefGoogle Scholar
  4. 4.
    Chen Q, Thouas GA. Metallic implant biomaterials. Mat Sci Eng R. 2015;87:1–57.CrossRefGoogle Scholar
  5. 5.
    Biesiekierski A, Wang J, Gepreel MA-H, Wen C. A new look at biomedical Ti-based shape memory alloys. Acta Biomater. 2012;8:1661–9.CrossRefGoogle Scholar
  6. 6.
    Inoue A, Takeuchi A. Recent development and application products of bulk glassy alloys. Acta Mater. 2011;59:2243–67.CrossRefGoogle Scholar
  7. 7.
    Eckert J, Das J, Pauly S, Duhamel C. Mechanical properties of bulk metallic glasses and composites. J Mater Res. 2007;22(2):285–301.CrossRefGoogle Scholar
  8. 8.
    Greer AL. Metallic glasses… on the threshold. Mater Today. 2009;12(1–2):14–23.CrossRefGoogle Scholar
  9. 9.
    Oak JJ, Inoue A. Formation, mechanical properties and corrosion resistance of Ti–Pd base glassy alloys. J Non Cryst Solids. 2008;354:1828–32.CrossRefGoogle Scholar
  10. 10.
    Yavari A, Lewandowski J, Eckert J. Mechanical properties of bulk metallic glasses. MRS Bull. 2007;32:635–8.CrossRefGoogle Scholar
  11. 11.
    Hornez J, Lefevre A, Joly D, Hildebrand H. Multiple parameter cytotoxicity index on dental alloys and pure metals. Biomol Eng. 2002;19:103–17.CrossRefGoogle Scholar
  12. 12.
    Elshahawy WM, Watanabe I, Kramer P. In vitro cytotoxicity evaluation of elemental ions released from different prosthodontic materials. Dent Mater. 2009;25:1551–5.CrossRefGoogle Scholar
  13. 13.
    Calin M, Gebert A, Ghinea AC, Gostin PF, Abdi S, Mickel C, Eckert J. Designing biocompatible Ti-based metallic glasses for implant applications. Mater Sci Eng C. 2013;33:875–83.CrossRefGoogle Scholar
  14. 14.
    Inoue A, Kong F, Zhu S, Shalaan E, Al-Marzouki F. Production methods and properties of engineering glassy alloys and composites. Intermetallics. 2015;58:20–30.CrossRefGoogle Scholar
  15. 15.
    Ke J, Huang C, Chen Y, Tsai W, Wei T, Huang J. In vitro biocompatibility response of Ti–Zr–Si thin film metallic glasses. Appl Surf Sci. 2014;322:41–6.CrossRefGoogle Scholar
  16. 16.
    Abdi S, Khoshkhoo MS, Shuleshova O, Bönisch M, Calin M, Baró M, Sort J, Gebert A. Effect of Nb addition on microstructure evolution and nanomechanical properties of a glass-forming TiZrSi alloy. Intermetallics. 2014;46:156–63.CrossRefGoogle Scholar
  17. 17.
    Lin H, Tsai P, Ke J, Li J, Jang J, Huang C, Haung J. Designing a toxic-element-free Ti-based amorphous alloy with remarkable supercooled liquid region for biomedical application. Intermetallics. 2014;55:22–7.CrossRefGoogle Scholar
  18. 18.
    Lin C, Huang C, Chuang J, Huang J, Jang J, Chen C. Rapid screening of potential metallic glasses for biomedical applications. Mater Sci Eng C. 2013;33:4520–6.CrossRefGoogle Scholar
  19. 19.
    Zhuravleva K, Chivu A, Teresiak A, Scudino S, Calin M, Schultz L, Eckert J. Porous low modulus Ti40Nb compacts with electrodeposited hydroxyapatite coating for biomedical applications. Mater Sci Eng C. 2013;33:2280–7.CrossRefGoogle Scholar
  20. 20.
    Li J, Lin H, Jang JKC, Huang J. Novel open-cell bulk metallic glass foams with promising characteristics. Mater Lett. 2013;105:140–3.CrossRefGoogle Scholar
  21. 21.
    Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–91.CrossRefGoogle Scholar
  22. 22.
    Xue W, Krishna BV, Bandyopadhyay A, Bose S. Processing and biocompatibility evaluation of laser processed porous titanium. Acta Biomater. 2007;3:1007–18.CrossRefGoogle Scholar
  23. 23.
    Wen C, Yamada Y, Hodgson P. Fabrication of novel TiZr alloy foams for biomedical applications. Mater Sci Eng C. 2006;26:1439–44.CrossRefGoogle Scholar
  24. 24.
    Raduta A, Nicoara M, Locovei C, Eckert J, Stoica M. Ti-based bulk glassy composites obtained by replacement of Ni with Ga. Intermetallics. 2016;69:28–34.CrossRefGoogle Scholar
  25. 25.
    Nicoara M, Locovei C, Serban VA, Parthiban R, Calin M, Stoica M. New Cu-free Ti-based composites with residual amorphous matrix. Materials. 2016;331:1–14.Google Scholar
  26. 26.
    Nicoara M, Raduta A, Parthiban R, Locovei C, Eckert J, Stoica M. Low Young’s modulus Ti-based porous bulk glassy alloy without cytotoxic elements. Acta Biomater. 2016;331:1–14.Google Scholar
  27. 27.
    Nicoara M, Raduta A, Locovei C, Buzdugan D, Stoica M. About thermostability of biocompatible Ti–Zr–Ta–Si amorphous alloys. J Therm Anal Calorim. 2017;127:107–13.CrossRefGoogle Scholar
  28. 28.
    Oak JJ, Louzguine-Luzgin DV, Inoue A. Fabrication of Ni-free Ti-based bulk-metallic glassy alloy having potential for application as biomaterial, and investigation of its mechanical properties, corrosion, and crystallization behavior. J Mater Res. 2007;22:1346–53.CrossRefGoogle Scholar
  29. 29.
    Stohs S, Bagchi D. Oxidative mechanisms in the toxicity of metal ions. Free Radic Bio Med. 1995;18:321–36.CrossRefGoogle Scholar
  30. 30.
    Wataha J, Lockwood P, Schedle A. Effect of silver, copper, mercury, and nickel ions on cellular proliferation during extended, low-dose exposures. J Biomed Mater Res. 2000;52:360–4.CrossRefGoogle Scholar
  31. 31.
    Craig R, Hanks C. Cytotoxicity of experimental casting alloys evaluated by cell culture tests. J Dent Res. 1990;69:1539–42.CrossRefGoogle Scholar
  32. 32.
    Secinti KD, Özalp H, Attar A, Sargon MF. Nanoparticle silver ion coatings inhibit biofilm formation on titanium implants. J Clin Neurosci. 2011;18:391–5.CrossRefGoogle Scholar
  33. 33.
    Choi O, Yu CP, Fernandez GE, Hua Z. Interactions of nanosilver with Escherichia coli cells in planktonic and biofilm cultures. Water Res. 2010;44:6095–103.CrossRefGoogle Scholar
  34. 34.
    Kalishwaralal K, BarathManiKanth S, Pandian SRK, Deepak V, Gurunathan S. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloid Surf B. 2010;79:340–4.CrossRefGoogle Scholar
  35. 35.
    Abdel-Hady M, Hinoshita K, Morinaga M. General approach to phase stability and elastic properties of beta-type Ti-alloys using electronic parameters. Scr Mater. 2006;55:477–80.CrossRefGoogle Scholar
  36. 36.
    Oak JJ, Louzguine-Luzgin DV, Inoue A. Synthetic relationship between titanium and alloying elements in designing Ni-free Ti-based bulk metallic glass alloys. Appl Phys Lett. 2007;91:1–4.CrossRefGoogle Scholar
  37. 37.
    Ashby M, Greer A. Metallic glasses as structural materials. Scr Mater. 2006;54:321–6.CrossRefGoogle Scholar
  38. 38.
    Suryanarayana C, Inoue A. Bulk metallic glasses. Boca Raton: CRC Press; 2011.Google Scholar
  39. 39.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;21:1702–6.CrossRefGoogle Scholar
  40. 40.
    Srivastava AP, Srivastava D, Mazumdar B, Dey GK. Thermoanalytical study of crystallization process in metallic glass of Co69Fe3Si18B10. J Therm Anal Calorim. 2015;119:1353–61.CrossRefGoogle Scholar
  41. 41.
    Strbac G, Strbac D, Lukic-Petrovic S, Siljegovic M. Thermal characterization of glasses from Fe–Sb–S–I system. J Therm Anal Calorim. 2017;127:247–54.CrossRefGoogle Scholar
  42. 42.
    Svoboda R, Malek J. Amorphous-to-crystalline transition in Te-doped Ge2Sb2Se5 glass. J Therm Anal Calorim. 2014;117:1073–83.CrossRefGoogle Scholar
  43. 43.
    Svoboda R, Malek J. Is the original Kissinger equation obsolete today? J Therm Anal Calorim. 2014;115:1961–7.CrossRefGoogle Scholar
  44. 44.
    Wu J, Pan Y, Pi J. On non-isothermal kinetics of two Cu-based bulk metallic glasses. J Therm Anal Calorim. 2014;115:267–74.CrossRefGoogle Scholar
  45. 45.
    Wei HD, Bao QH, Wang CX, Zhang WS, Yuan ZZ, Chen XD. Crystallization kinetics of (Ni0.75Fe0.25)78Si10B12 amorphous alloy. J Non Cryst Solids. 2008;354:1876–82.CrossRefGoogle Scholar
  46. 46.
    Zhang J, Wang W, Ma H, Li G, Lia R, Zhang Z. Isochronal and isothermal crystallization kinetics of amorphous Fe-based alloys. Thermochim Acta. 2010;505:41–6.CrossRefGoogle Scholar
  47. 47.
    Gong P, Wang X, Yao K. Effects of alloying elements on crystallization kinetics of Ti–Zr–Be bulk metallic glass. J Mater Sci. 2016;51:5321–9.CrossRefGoogle Scholar
  48. 48.
    Pratap A, Rao TLS, Lad KN, Dhurandhar HD. Kinetics of crystallization of titanium based binary and ternary amorphous alloys. J Non Cryst Solids. 2007;353:2346–9.CrossRefGoogle Scholar
  49. 49.
    Zhu SL, Wang XM, Qin FX, Yoshimura M, Inoue A. New TiZrCuPd quaternary bulk glassy alloys with potential of biomedical applications. Mater Trans JIM. 2007;48(9):2445–8.CrossRefGoogle Scholar
  50. 50.
    Gong P, Yao K, Zhao S. Cu-alloying effect on crystallization kinetics of Ti41Zr25Be28Fe6 bulk metallic glass. J Therm Anal Calorim. 2015;121:697–704.CrossRefGoogle Scholar
  51. 51.
    Huang Y, Shen J, Sun J, Yu X. A new Ti–Zr–Hf–Cu–Ni–Si–Sn bulk amorphous alloy with high glass-forming ability. J Alloy Compd. 2007;427(1–2):171–5.CrossRefGoogle Scholar
  52. 52.
    Xia MX, Zheng HX, Jian L, Ma CL, Li JG. Thermal stability and glass-forming ability of new Ti-based bulk metallic glasses. J Non Cryst Solids. 2005;351:3747–51.CrossRefGoogle Scholar
  53. 53.
    Khalifa HE, Vecchio KS. Thermal stability and crystallization phenomena of low cost Ti-based bulk metallic glass. J Non Cryst Solids. 2011;357:3393–8.CrossRefGoogle Scholar
  54. 54.
    Kasyap S, Patel AT, Pratap A. Crystallization kinetics of Ti20Zr20Cu60 metallic glass by isoconversional methods using modulated differential scanning calorimetry. J Therm Anal Calorim. 2014;116:1325–36.CrossRefGoogle Scholar
  55. 55.
    Haratian S, Haddad-Sabzevar M. Thermal stability and non-isothermal crystallization kinetics of Ti41.5Cu42.5Ni7.5Zr2.5Hf5Si1 bulk metallic glass. J Non Cryst Solids. 2015;429:164–70.CrossRefGoogle Scholar
  56. 56.
    Lu XC, Li HY. Kinetics of non-isothermal crystallization in Cu50Zr43Al7 and (Cu50Zr43Al7)95Be5 metallic glasses. J Therm Anal Calorim. 2014;115:1089–97.CrossRefGoogle Scholar
  57. 57.
    Li XP, Roberts MP, O’Keeffe S, Sercombe TB. Selective laser melting of Zr-based bulk metallic glasses: processing, microstructure and mechanical properties. Mater Des. 2016;112:217–26.CrossRefGoogle Scholar
  58. 58.
    Pauly S, Lober L, Petters R, Stoica M, Scudino S, Kuhn U, Eckert J. Processing metallic glasses by selective laser melting. Mater Today. 2013;16:37–41.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Politehnica University TimisoaraTimisoaraRomania
  2. 2.ETH ZürichZurichSwitzerland

Personalised recommendations