Skip to main content
Log in

Application of cooling curve analysis in solidification pattern and structure control of grey cast irons

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Commercial cast iron is a typical multi-phase, natural metal matrix composite, including a ferrous matrix at different alloying grade and several phases, each having varying levels of carbon and other elements present, such as carbide, graphite and nitride. It was found that some active elements, such as S, O, Al, Ca, Ba and RE (rare earth), are important to control carbide/graphite phase formation. A major purpose of the present paper was to investigate the solidification pattern and structure of un-inoculated and inoculated cast irons, with intentionally critical conditions for graphite nucleation, typical for electric melted iron, by thermal (cooling curve) analysis technique; this is especially pertinent to the production of thin section iron castings. Increased chill (carbides formation), undercooled graphite amount, eutectic cells count and relative density correlate well with the degree of eutectic undercooling, at the beginning of eutectic reaction and at the end of solidification. Inoculation application led to decrease of ∆Tm and increase of ∆T1 (it became positive) and ∆T3 (less negative) parameters, at higher influencing power on ∆T1 parameter (narrow variation range). Higher inoculant addition rate gives better cooling curve analysis parameters. ∆T1 appears to be the recommended cooling curve analysis parameter to characterize the specifics of solidification pattern and structure formation on the entire solidification range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Riposan I, Chisamera M, Stan S. New developments in high quality grey cast irons. China Foundry. 2014;11(4):351–64.

    Google Scholar 

  2. Riposan I, Skaland T. Modification and Inoculation of Cast Iron. In: In D.M. Stefanescu, Volume Editor, Cast Iron Science and Technology Handbook. 2017. pp. 160–176, American Society of Materials.

  3. Sparkman D, Bhaskaram CA. Chill measurement by thermal analysis. AFS Trans. 1996;104:969–76.

    CAS  Google Scholar 

  4. Sillen, RV. Optimizing Inoculation Practice by means of Thermal Analysis. In: AFS International Inoculation Conference, 6–8 Apr.1998, Rosemont, Illinois,USA.

  5. Dioszegi A, Hattel J. Inverse thermal analysis method to study solidification in cast iron. Int J Cast Met Res. 2004;17(5):311–8.

    Article  CAS  Google Scholar 

  6. Emadi D, Whiting LV, Nafisi S, Ghomashchi R. Applications of thermal analysis in quality control of solidification processes. J Therm Anal Calorim. 2005;81:235–42.

    Article  CAS  Google Scholar 

  7. Dioszegi A, Svensson IL. On the problems of thermal analysis of solidification. Mater Sci Eng A. 2005;413–414:474–9.

    Article  Google Scholar 

  8. Sillen RV. Novacast Technologies, www.novacast.se, 2006.

  9. Chisamera M, Stan S, Riposan I, Costache G, Barstow M. Solidification pattern of in-mold and ladle inoculated low sulfur hypoeutectic gray cast irons. AFS Trans. 2008;116:641–52.

    CAS  Google Scholar 

  10. Stan S, Chisamera M, Riposan I, Stefan E, Barstow M. Solidification pattern of un-inoculated and inoculated gray cast irons in wedge test samples. AFS Trans. 2010;118:295–309.

    CAS  Google Scholar 

  11. Sparkman D. Microstructure by Thermal Analysis. AFS Trans. 2011; Paper 11-068:413–419.

  12. Stan S, Chisamera M, Riposan I, Barstow M. Applications of thermal analysis to monitor the quality of hypoeutectic cast irons during solidification in sand and metal moulds. J Therm Anal Calorim. 2012;110(3):1185–92.

    Article  CAS  Google Scholar 

  13. Stefanescu DM, Moran M, Boonmee S. The use of combined liquid displacement and cooling curve analysis in understanding the solidification of cast iron. AFS Trans. 2012;120:365–74.

    CAS  Google Scholar 

  14. Riposan I, Chisamera M, Stan S, Barstow M. Identifying chill tendency of cast iron melts by thermal analysis. Int J Cast Met Res. 2013;26(3):152–9.

    Article  CAS  Google Scholar 

  15. Alonso G, Stefanescu DM, Suarez R. Understanding graphite expansion during the eutectic solidification of cast iron through combined linear displacement and thermal analysis. Int Foundry Res. 2014;66(4):2–12.

    Google Scholar 

  16. Riposan I, Stefan IC, Firican MC, Stan S. Thermal Analysis to Optimize and Control the Cast Iron Solidification Process. In: Proc 6th Int Conf. Advanced Materials and Structures–AMS ‘13, 16–17 Oct. 2015, Timisoara, Romania.

  17. Stefanescu DM. Thermal analysis-theory and applications in metalcasting. J Metalcasting. 2015;9(1):7–22.

    Article  CAS  Google Scholar 

  18. Klancnik U, Habjan J, Klancnik G, Medved J. Thermal analysis of indefinite chill cast iron modified with ferrovanadium and ferrotungsten. J Therm Anal Calorim. 2017;127:71–8.

    Article  CAS  Google Scholar 

  19. Tadesse A, Fredriksson H. Volume change during the solidification of grey cast iron: its relation with the microstructural variation, comparison between experimental and theoretical analysis. Int J Cast Met Res. 2017. https://doi.org/10.1080/13640461.2016.1277851.

    Google Scholar 

  20. Chisamera M, Riposan I, Stan S, Skaland T. Effects of calcium and strontium undercooling, chill and microstructure in grey irons of varying sulphur and oxygen contents. In: Proc. 64th World Foundry Congress, 2000, Paris, France, Paper No. 62.

  21. Riposan I, Chisamera M, Stan S, Skaland T, Onsoien MI. Analyses of possible nucleation sites in Ca/Sr overinoculated grey irons. AFS Trans. 2001;109:1151–62.

    CAS  Google Scholar 

  22. Riposan I, Chisamera M, Stan S, SkalandT. Graphite nucleants (microinclusions) characterization in Ca/Sr inoculated grey irons. Int J Cast Metal Res. 2003; 16(1–3):105–111.

  23. Riposan I, Chisamera M, Stan S, Toboc P, Ecob C, White D. Al, Zr-FeSi preconditioning of grey cast irons. Mater Sci Technol. 2008;24(5):579–84.

    Article  CAS  Google Scholar 

  24. Chisamera M, Riposan I, Stan S, White D, Grasmo G. Graphite nucleation control in grey cast iron. Int J Cast Metal Res. 2008;21(1–4):39–44.

    Article  CAS  Google Scholar 

  25. Sommerfeld A, Tonn B. Nucleation of graphite in cast iron melts depending on manganese, sulphur and oxygen. Int J Cast Met Res. 2008;21(1–4):23–6.

    Article  CAS  Google Scholar 

  26. Gundlach R. observations on structure control to improve the properties of cast irons. The honorary cast iron lecture, Div.5, 112nd AFS Metalcasting Congress, Atlanta, Georgia, USA; 2008. Paper 08–158.

  27. Riposan I, Chisamera M, Stan S, Ecob C, Wilkinson D. Role of Al, Ti, Zr in Grey Iron Preconditioning/Inoculation. J Mater Eng Perform. 2009;18(1):83–7.

    Article  CAS  Google Scholar 

  28. Sommerfeld A, Tonn B. Theory of graphite nucleation in lamellar graphite cast iron. Int. J. Metalcasting. 2009;3(4):39–47.

    Article  CAS  Google Scholar 

  29. Campbell JA. Hypothesis for cast iron microstructures. Met Mater Trans B. 2009;40(6):786–801.

    Article  Google Scholar 

  30. Riposan I, Chisamera M, Stan S, Hartung C, White D. Three-stage model for nucleation of graphite in grey cast iron. Mater Sci Technol. 2010;26(12):1439–47.

    Article  CAS  Google Scholar 

  31. Elmquist L, Salera S, Dioszegi A. Inoculation and its effect on primary solidification structure of hypoeutectic grey cast iron. Int J Cast Met Res. 2010;23(2):124–9.

    Article  CAS  Google Scholar 

  32. Riposan I, Chisamera M, Stan S. Enhanced quality in electric melt grey cast irons. ISIJ Int. 2013;53(10):1683–95.

    Article  CAS  Google Scholar 

  33. Alonso G, Stefanescu DM, Larranaga P, De la Fuente F, Suarez R. On the Nucleation of Graphite in Lamellar Graphite Cast Iron. AFS Trans. 2016; 124:Paper 16–020.

  34. American Society for Testing of Materials, Standard A367–85: Standard Test Methods of Chill Testing of Cast Iron, 1. West Conshohocken. USA: PA; 2000. p. 151–4.

    Google Scholar 

  35. Riposan I, Chisamera M, Stan S, White D. Chilling properties of Ba/Ca/Sr inoculated grey cast irons. Int J Cast Met Res. 2007;20(2):90–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially financed by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS/CCCDI–UEFISCDI, project number PN-III-P2-2.1-PED-2016-1793, within PNCDI III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stelian Stan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riposan, I., Chisamera, M. & Stan, S. Application of cooling curve analysis in solidification pattern and structure control of grey cast irons. J Therm Anal Calorim 132, 1017–1028 (2018). https://doi.org/10.1007/s10973-018-7023-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7023-3

Keywords

Navigation