Skip to main content
Log in

Drying kinetics of tobacco strips at different air temperatures and relative humidities

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effects of air temperature and relative humidity (RH) on the drying kinetics of two kinds of flue-cured tobacco strips (C3F and B3F) were studied using a thermogravimetric device in this work. The drying experiments were carried out with drying air temperatures of 60, 70, 80, and 90 °C and RH values of 0, 10, 20, 30, and 40% at a constant airflow. Taking the effect of RH into consideration, a modified Arrhenius-type equation of diffusivity was proposed. In addition, comparing five thin-layer drying models and five equilibrium moisture content models to describe the drying kinetics and the desorption isotherms of tobacco strips, high coefficients of determination (R2) and low reduced Chi-square (χ2) and residual sum of squares (RSS) values indicated that the Logarithmic model and the Modified Oswin model appeared to be the most suitable for predicting the moisture ratio and the moisture desorption relationship of tobacco strips. The effective moisture diffusion coefficient under different temperatures and RHs ranged from 1.68 × 10−11 to 6.81 × 10−11 m2 s−1 for C3F and from 1.62 × 10−11 to 6.68 × 10−11 m2 s−1 for B3F. A modified Arrhenius-type equation with an RH term was found to be effective for describing the drying behavior of two flue-cured tobacco strips, and the activation energy (Ea) values were 34.6 and 35.2 kJ mol−1 for C3F and B3F, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A :

Model constant (−)

a, b, c, k, n :

Model constant (−)

B 1 :

Constant (m2 s−1)

B 2 :

Constant (%−1)

D eff :

Effective diffusion coefficient of moisture (m2 s−1)

DR:

Drying rate (dry basis) (g water g−1 s−1)

E a :

Activation energy (kJ mol−1)

L :

Average thickness of tobacco strips (m)

MR:

Moisture ratio (−)

MRexp,i :

The i-th experimental moisture ratio (−)

MRpre,i :

The i-th predicted moisture ratio (−)

N :

Number of observations (−)

n :

Number of constants (−)

R :

Gas constant (J mol−1 K−1)

R 2 :

Coefficient of determination (−)

RSS:

Residual sum of squares (−)

RH:

Relative humidity (%)

T :

Temperature (°C)

t :

Time (s)

X :

Moisture content (dry basis) (g water g−1)

χ 2 :

Reduced Chi-square (−)

0:

Initial value

e:

Equilibrium

References

  1. Wang H, Xin H, Liao Z, Li J, Xie W, Zeng Q, et al. Study on the effect of cut tobacco drying on the pyrolysis and combustion properties. Dry Technol. 2014;32(2):130–4.

    Article  Google Scholar 

  2. Toğrul İT, Pehlivan D. Modelling of thin layer drying kinetics of some fruits under open-air sun drying process. J Food Eng. 2004;65(3):413–25.

    Article  Google Scholar 

  3. Kayran S, Doymaz İ. Determination of drying kinetics and physicochemical characterization of apricot pomace in hot-air dryer. J Therm Anal Calorim. 2017;130(2):1163–70. https://doi.org/10.1007/s10973-017-6504-0.

    Article  CAS  Google Scholar 

  4. Krokida MK, Karathanos VT, Maroulis ZB, Marinos-Kouris D. Drying kinetics of some vegetables. J Food Eng. 2003;59(4):391–403.

    Article  Google Scholar 

  5. Huang YW, Chen MQ. Thin-layer isothermal drying kinetics of municipal sewage sludge based on two falling rate stages during hot-air-forced convection. J Therm Anal Calorim. 2017;129(1):567–75. https://doi.org/10.1007/s10973-017-6150-6.

    Article  CAS  Google Scholar 

  6. Hosseinabadi HZ, Doosthoseini K, Layeghi M. Drying kinetics of poplar (populus deltoides) wood particles by a convective thin layer dryer. Drvna Ind. 2012;63(3):169–76.

    Article  Google Scholar 

  7. Esturk O. Intermittent and continuous microwave-convective air-drying characteristics of sage (Salvia officinalis) leaves. Food Bioprocess Technol. 2012;5(5):1664–73.

    Article  Google Scholar 

  8. Roberts JS, Kidd DR, Padilla-Zakour O. Drying kinetics of grape seeds. J Food Eng. 2008;89(4):460–5.

    Article  Google Scholar 

  9. Alvarez-López I, Llanes-Santiago O, Verdegay JL. Drying process of tobacco leaves by using a fuzzy controller. Fuzzy Set Syst. 2005;150(3):493–506.

    Article  Google Scholar 

  10. Martínezmartínez V, Baladrón C, Gomezgil J, Ruizruiz G, Navasgracia LM, Aguiar JM, et al. Temperature and relative humidity estimation and prediction in the tobacco drying process using artificial neural networks. Sens Basel. 2012;12(10):14004–21.

    Article  Google Scholar 

  11. Kiranoudis CT, Maroulis ZB, MarinosKouris D. Mass transfer modeling for virginia tobacco curing. Dry Technol. 1990;8(2):351–66.

    Article  Google Scholar 

  12. Legros R, Millington CA, Clift R. Drying of tobacco particles in a mobilized bed. Dry Technol. 1994;12(3):517–43.

    Article  CAS  Google Scholar 

  13. Zhu WK, Wang L, Duan K, Chen LY, Li B. Experimental and numerical investigation of the heat and mass transfer for cut tobacco during two-stage convective drying. Dry Technol. 2015;33(8):907–14.

    Article  Google Scholar 

  14. Liu JT, Li M, Yu QF, Ling DL. A novel parabolic trough concentrating solar heating for cut tobacco drying system. Int J Photoenergy. 2014;2014:1–10.

    CAS  Google Scholar 

  15. Huang F, Chen Q, Wang L, Dou J, Wang S, Li B. Study on thin-layer dynamic models of humidifying and drying of tobacco strips. Acta Tabacaria Sin. 2014;20(6):34–40 (in Chinese).

    CAS  Google Scholar 

  16. Xu D, Dai Y, Jin D, Zhu W, Du J. Effects of drying conditions on rehydration characteristics of tobacco strips. Tob Sci Technol. 2013(4):5–8 + 15(in Chinese).

  17. Bispo JAC, Bonafe CFS, Santana KMOV, Santos ECA. A comparison of drying kinetics based on the degree of hydration and moisture ratio. LWT Food Sci Technol. 2015;60(1):192–8.

    Article  CAS  Google Scholar 

  18. Bruce DM. Exposed-layer barley drying: three models fitted to new data up to 150 °C *. J Agric Eng Res. 1985;32(4):337–48.

    Article  Google Scholar 

  19. Chen D-Y, Zhang D, Zhu X-F. Heat/mass transfer characteristics and non isothermal drying kinetics at the first stage of biomass pyrolysis. J Therm Anal Calorim. 2012;109(2):847–54. https://doi.org/10.1007/s10973-011-1790-4.

    Article  CAS  Google Scholar 

  20. Babalis SJ, Papanicolaou E, Kyriakis N, Belessiotis VG. Evaluation of thin-layer drying models for describing drying kinetics of figs (Ficus Carica). J Food Eng. 2006;75(2):205–14.

    Article  Google Scholar 

  21. Yaldiz O, Ertekin C, Uzun HI. Mathematical modeling of thin layer solar drying of Sultana grapes. Energy. 2001;26(5):457–65.

    Article  Google Scholar 

  22. Heras ML, Heredia A, Castelló ML, Andrés A. Moisture sorption isotherms and isosteric heat of sorption of dry persimmon leaves. Food Biosci. 2014;7:88–94.

    Article  Google Scholar 

  23. Raji AO, Ojediran JO. Moisture sorption isotherms of two varieties of millet. Food Bioprod Process. 2011;89(3):178–84.

    Article  Google Scholar 

  24. Kaymak-Ertekin F, Gedik A. Sorption isotherms and isosteric heat of sorption for grapes, apricots, apples and potatoes. LWT Food Sci Technol. 2004;37(4):429–38.

    Article  CAS  Google Scholar 

  25. Halsey G. Physical adsorption on non-uniform surfaces. J Chem Phys. 1948;16(10):931–7.

    Article  CAS  Google Scholar 

  26. Mehta S, Singh A. Adsorption isotherms for red chilli (Capsicum annum L.). Eur Food Res Technol. 2006;223(6):849–52.

    Article  CAS  Google Scholar 

  27. Zhang JW, Xin YN, Li B. Effects of temperature and humidity of drying medium on drying kinetics of strips. Tob Sci Technol. 2014;10:15–9 (in Chinese).

    Google Scholar 

  28. Tahmasebi A, Yu J, Han Y, Zhao H, Bhattacharya S. A kinetic study of microwave and fluidized-bed drying of a Chinese lignite. Chem Eng Res Des. 2013;92(1):54–65.

    Article  Google Scholar 

  29. Queiroz MR, Nebra SA. Theoretical and experimental analysis of the drying kinetics of bananas. J Food Eng. 2001;47(2):127–32.

    Article  Google Scholar 

  30. Crank J. The mathematics of diffusion. Oxford: Clarendon Press; 1975.

    Google Scholar 

  31. Bi J, Yang A, Liu X, Wu X, Chen Q, Wang Q, et al. Effects of pretreatments on explosion puffing drying kinetics of apple chips. LWT Food Sci Technol. 2015;60(2):1136–42.

    Article  CAS  Google Scholar 

  32. Evin D. Thin layer drying kinetics of Gundelia tournefortii L. Food Bioprod Process. 2012;90(2):323–32.

    Article  Google Scholar 

  33. Meziane S. Drying kinetics of olive pomace in a fluidized bed dryer. Enegy Convers Manag. 2011;52(52):1644–9.

    Article  Google Scholar 

  34. Ait ML, Kouhila M, Jamali A, Lahsasni S, Mahrouz M. Moisture sorption isotherms and heat of sorption of bitter orange leaves (Citrus aurantium). J Food Eng. 2005;67(4):491–8.

    Article  Google Scholar 

  35. Argyropoulos D, Alex R, Kohler R, Müller J. Moisture sorption isotherms and isosteric heat of sorption of leaves and stems of lemon balm (Melissa officinalis L.) established by dynamic vapor sorption. LWT Food Sci Technol. 2012;47(2):324–31.

    Article  CAS  Google Scholar 

  36. Mghazli S, Idlimam A, Mahrouz M, Lahnine L, Hidar N, Ouhammou M, et al. Comparative moisture sorption isotherms, modelling and isosteric heat of sorption of controlled and irradiated Moroccan rosemary leaves. Ind Crop Prod. 2016;88:28–35.

    Article  Google Scholar 

  37. He X, Lau AK, Sokhansanj S, Lim CJ, Bi XT, Melin S, et al. Moisture sorption isotherms and drying characteristics of aspen (Populus tremuloides). Biomass Bioenerg. 2013;57(10):161–7.

    Article  CAS  Google Scholar 

  38. Horuz E, Bozkurt H, Karataş H, Maskan M. Drying kinetics of apricot halves in a microwave-hot air hybrid oven. Heat Mass Transf 2017;53(6):2117–27.

    Article  CAS  Google Scholar 

  39. Beigi M. Hot air drying of apple slices: dehydration characteristics and quality assessment. Heat Mass Transf. 2016;52(8):1435–42.

    Article  CAS  Google Scholar 

  40. Aghbashlo M, Kianmehr MH, Hassan-Beygi SR. Drying and rehydration characteristics of sour cherry (prunus cerasus l.). J Food Process Preserv. 2010;34(3):351–65.

    Article  Google Scholar 

  41. Pusat S, Akkoyunlu MT, Erdem HH, Dağdaş A. Drying kinetics of coarse lignite particles in a fixed bed. Fuel Process Technol. 2015;130(130):208–13.

    Article  CAS  Google Scholar 

  42. Inazu T, Iwasaki KI, Furuta T. Effect of temperature and relative Humidity on drying kinetics of fresh Japanese noodle (Udon). LWT Food Sci Technol. 2002;35(8):649–55.

    Article  CAS  Google Scholar 

  43. Villeneuve S, Gélinas P. Drying kinetics of whole durum wheat pasta according to temperature and relative humidity. LWT Food Sci Technol. 2007;40(3):465–71.

    Article  CAS  Google Scholar 

  44. Chen Q, Bi J, Wu X, Yi J, Zhou L, Zhou Y. Drying kinetics and quality attributes of jujube (Zizyphus jujuba Miller) slices dried by hot-air and short- and medium-wave infrared radiation. LWT Food Sci Technol. 2015;64(2):759–66.

    Article  CAS  Google Scholar 

  45. Doymaz İ. Effect of pre-treatments using potassium metabisulphide and alkaline ethyl oleate on the drying kinetics of apricots. Biosyst Eng. 2004;89(3):281–7.

    Article  Google Scholar 

  46. Toğrul İT, Pehlivan D. Modelling of drying kinetics of single apricot. J Food Eng. 2003;58(1):23–32.

    Article  Google Scholar 

  47. Panchariya PC, Popovic D, Sharma AL. Thin-layer modelling of black tea drying process. J Food Eng. 2002;52(4):349–57.

    Article  Google Scholar 

  48. Park KJ, Vohnikova Z, Fpr B. Evaluation of drying parameters and desorption isotherms of garden mint leaves (Mentha crispa L.). J Food Eng. 2002;51(3):193–9.

    Article  Google Scholar 

  49. Kaleemullah S, Kailappan R. Drying kinetics of red chillies in a rotary dryer. Biosyst Eng. 2005;92(1):15–23.

    Article  Google Scholar 

  50. Kaleemullah S, Kailappan R. Modelling of thin-layer drying kinetics of red chillies. J Food Eng. 2006;76(4):531–7.

    Article  Google Scholar 

  51. Ortiz J, Lemus-Mondaca R, Vega-Gálvez A, Kong AH, Puente-Diaz L, Zura-Bravo L, et al. Influence of air-drying temperature on drying kinetics, colour, firmness and biochemical characteristics of Atlantic salmon (Salmo salar L.) fillets. Food Chem. 2013;139(1–4):162–9.

    Article  CAS  Google Scholar 

  52. Demiray E, Tulek Y. Drying characteristics of garlic (Allium sativum L) slices in a convective hot air dryer. Heat Mass Transf. 2014;50(6):779–86.

    Article  CAS  Google Scholar 

  53. Doymaz İ. Thin-layer drying characteristics of sweet potato slices and mathematical modelling. Heat Mass Transf. 2011;47(3):277–85.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of National Key Technology R&D Program of China (2015BAK39B02) and Fundamental Research Funds for the Central Universities (ZZ1327).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. W. Zhang or B. Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, Y.N., Zhang, J.W. & Li, B. Drying kinetics of tobacco strips at different air temperatures and relative humidities. J Therm Anal Calorim 132, 1347–1358 (2018). https://doi.org/10.1007/s10973-018-7005-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7005-5

Keywords

Navigation