Journal of Thermal Analysis and Calorimetry

, Volume 133, Issue 1, pp 797–803 | Cite as

Analysis of the thermal hazards of 1-butyl-3-methylimidazolium chloride mixtures with cellulose and various metals

  • Nana Yamaki
  • Kento Shiota
  • Yu-ichiro Izato
  • Atsumi Miyake
Article
  • 53 Downloads

Abstract

Ionic liquids (ILs) are a relatively new class of environmentally benign and comparatively safe solvents and are expected to have numerous applications in chemical processes. Although pure ILs are thermally stable, the presence of impurities can affect their thermal stability and decomposition behavior. In addition, ILs decomposition products include flammable gases that may present a fire hazard. When designing safer processes and operating conditions, it is therefore important to investigate IL thermal properties and decomposition products in combination with additives. The present work focused on cellulose dissolution which is promising application of ILs to obtain better understanding of thermal hazards. Mixtures of cellulose, iron (III) oxide (Fe2O3), copper(II) oxide (CuO), chromium, and nickel with 1-butyl-3-methylimidazolium chloride (BmimCl) were examined, using differential scanning calorimetry, high-sensitivity calorimetry, and thermogravimetry–differential thermal analysis–mass spectrometry. The addition of CuO was found to generate an exothermic reaction below the decomposition temperature of BmimCl and also to lower the decomposition temperature. BmimCl/CuO mixtures also produced extremely flammable gases below the decomposition temperature of pure BmimCl.

Keywords

Ionic liquids Thermal hazards Cellulose dissolving 1-Butyl-3-methylimidazolium chloride Evolved gas analysis 

References

  1. 1.
    Zhimin X, Yuwei Z, Xiao-qin Z, Yuanyuan C, Tiancheng M. Thermal stabilities and decomposition mechanism of amino- and hydroxyl-functionalized ionic liquids. Thermochim Acta. 2014;578:59–67.CrossRefGoogle Scholar
  2. 2.
    Martyn JE, Kenneth RS. Ionic liquids. Green solvents for the future. Pure Appl Chem. 2000;72:1391–8.CrossRefGoogle Scholar
  3. 3.
    Ngoc LM, Kihun A, Yoon-Mo K. Methods for recovery of ionic liquids—a review. Process Biochem. 2014;49:872–81.CrossRefGoogle Scholar
  4. 4.
    Pengfei Z, Yutong G, Yiqi L, Yan G, Yong W, Cong W. Ionic liquids with metal chelate anions. Chem Commun. 2012;48:2334–6.CrossRefGoogle Scholar
  5. 5.
    John SW. A short history of ionic liquids—from molten salts to neoteric solvents. Green Chem. 2002;4:73–80.CrossRefGoogle Scholar
  6. 6.
    Fabio B, Cinzia C. The heck reaction in ionic liquids: progress and challenges. Molecules. 2010;15:2211–45.CrossRefGoogle Scholar
  7. 7.
    Christian PM. Supported ionic liquid catalysis. Chem Eur. 2005;11:50–6.CrossRefGoogle Scholar
  8. 8.
    Roberto IC, Joan FB. Comparison of Ionic liquids to conventional organic solvents for extraction of aromatics from aliphatics. J Chem Eng Data. 2016;61:1685–99.CrossRefGoogle Scholar
  9. 9.
    Samir IAE. Ionic liquids recycling and reuse. In: Scott TH, editor. Ionic liquids—classes and properties. London: Intech; 2011. p. 239–72.Google Scholar
  10. 10.
    Barbara R, Martin S, Andrea B, Martin W, Wolfgang K. Polymer electrolyte for lithium batteries based on photochemically crosslinked poly(ethylene oxide) and ionic liquid. Eur Polym J. 2008;44:2986–90.CrossRefGoogle Scholar
  11. 11.
    Zhe W, Steen MR, Bradley DG, Timothy AG. Safety concerns in a pharmaceutical manufacturing process using dimethyl sulfoxide (DMSO) as a solvent. Org Process Res Dev. 2012;16:1994–2000.CrossRefGoogle Scholar
  12. 12.
    Francis S. Atsumi Miyake translator. Thermal safety of chemical process: risk assessment and process design. Tokyo: Maruzen; 2011.Google Scholar
  13. 13.
    Horng-Jang L, Shih-Kai H, Hao-Ying C, Sheng-Nan L. 2012 International symposium on safety science and technology reason for ionic liquids to be combustible. Procedia Engineering, vol. 45; 2012. p. 502–6.Google Scholar
  14. 14.
    Marek K, Jan G, Jarl BR. Thermal stability of low temperature ionic liquids revisited. Thermochim Acta. 2004;412:47–53.CrossRefGoogle Scholar
  15. 15.
    Helen LN, Karen L, Liesl H, Alan BM. Thermal properties of imidazolium ionic liquids. Thermochim Acta. 2000;357–8:97–102.Google Scholar
  16. 16.
    Douglas MF, Jeffrey WG, Hugh CDL, Paul CT. TGA decomposition kinetics of 1-butyl-2,3-dimethylimidazolium tetrafluoroborate and the thermal effects of contaminants. J Chem Thermodyn. 2005;37:900–5.CrossRefGoogle Scholar
  17. 17.
    Walid HA, Jeffrey W, Marc N, Richard HH, Thomas E, John C, Paul CT, Hugh CD, Douglas MF. Thermal degradation studies of alkyl-imidazolium salts and their application in nanocomposites. Thermochim Acta. 2004;409:3–11.CrossRefGoogle Scholar
  18. 18.
    Douglas MF, Walid HA, Jeffrey WG, Paul HM, Hugh CDL, Paul CT. Flammability, thermal stability, and phase change characteristics of several trialkylimidazolium salts. Green Chem. 2003;5:724–7.CrossRefGoogle Scholar
  19. 19.
    Qiwei Y, Kun Y, Huabin X, Baogen S, Zongbi B, Yiwen Y, Qilong R. The effect of molecular solvents on the viscosity, conductivity and ionicity of mixtures containing chloride anion-based ionic liquid. J Ind Eng Chem. 2013;19:1708–14.CrossRefGoogle Scholar
  20. 20.
    Frank W, Loredana NT, Frank M. Thermostability of imidazolium ionic liquids as direct solvents for cellulose. Thermochim Acta. 2012;528:76–84.CrossRefGoogle Scholar
  21. 21.
    Yujin C, Rubing Z, Tao C, Jing G, Mo X, Huizhou L. Imidazolium-based ionic liquids for cellulose pretreatment: recent progresses and future perspectives. Appl Microbiol Biotechnol. 2017;101:521–32.CrossRefGoogle Scholar
  22. 22.
    Martin G, Pedro F, Thomas H. Ionic liquids—promising but challenging solvents for homogeneous derivatization of cellulose. Molecular. 2012;17:7458–502.CrossRefGoogle Scholar
  23. 23.
    Richard PS, Scott KS, John DH, Robin DR. Dissolution of cellulose with ionic liquids. J Am Chem Soc. 2002;124:4974–5.CrossRefGoogle Scholar
  24. 24.
    Hyungsup K, Yongjun A, Seung Y. Comparing the influence of acetate and chloride anions on the structure of ionic liquid pretreated lignocellulosic biomass. Biomass Bioenergy. 2016;93:234–53.Google Scholar
  25. 25.
    Yan C, Jin W, Jun Z, Huiquan L, Yi Z, Jiasong H. Room temperature ionic liquids (RTILs): a new and versatile platform for cellulose processing and derivatization. Chem Eng J. 2009;147:13–21.CrossRefGoogle Scholar
  26. 26.
    Samira VF, Yong-Wah K, Constance AS. A coupled low temperature oxidative and ionic liquid pretreatment of lignocellulosic biomass. Catal Today. 2016;269:2–8.CrossRefGoogle Scholar
  27. 27.
    Yamamoto Y, Miyake A. Influence of a mixed solvent containing ionic liquids on the thermal hazard of the cellulose dissolution process. J Therm Anal Calorim. 2017;127:743–8.CrossRefGoogle Scholar
  28. 28.
    Chieu DT, Silvia L, Daniel O. Absorption of water by room-temperature ionic liquids: effect of anions on concentration and state of water. Appl Spectrosc. 2003;57:152–7.CrossRefGoogle Scholar
  29. 29.
    Anastasia E, Grit H, Peer S. Thermal stability and crystallization behavior of imidazolium halide ionic liquids. Thermochim Acta. 2013;573:162–9.CrossRefGoogle Scholar
  30. 30.
    United Nations. Globally harmonized system of classification and labeling of chemicals (GHS) fourth revised edition. 2011. https://www.unece.org/fileadmin/DAM/trans/danger/publi/ghs/ghs_rev04/English/ST-SG-AC10-30-Rev4e.pdf. Accessed 25 June 2017.
  31. 31.
    Maaike CK, Wim B, Cor JP, Geert-Jan W. Quantum chemical aided prediction of the thermal decomposition mechanisms and temperatures of ionic liquids. Thermochim Acta. 2007;465:40–7.CrossRefGoogle Scholar
  32. 32.
    Arindrajit C, Stefan TT. Confined rapid thermolysis/FTIR/ToF studies of imidazolium-based ionic liquids. Thermochim Acta. 2006;443:159–72.CrossRefGoogle Scholar
  33. 33.
    Yan H, Jing P, Shaowen H, Jiuqiang L, Maolin Z. Thermal decomposition of allyl-imidazolium-based ionic liquid studied by TGA–MS analysis and DFT calculations. Thermochim Acta. 2010;501:78–83.CrossRefGoogle Scholar
  34. 34.
    NIST Mass Spec Data Center. Mass Spectra in NIST Chemistry WebBook, NIST Standard Reference Database Number 69. Eds.  https://doi.org/10.18434/t4d303. Accessed 21 July 2017.
  35. 35.
    Siedlecka EM, Czerwicka M, Neumann J, Stepnowski P, Fernández JF, Thöming J. Ionic liquids: methods of degradation and recovery. In: Ionic liquids: theory, properties, new approaches. 2011. http://www.intechopen.com/books/ionic-liquids-theory-properties-new-approaches/ionic-liquids-methods-of-degradation-and-recovery. Accessed 18 July 2017.

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Nana Yamaki
    • 1
  • Kento Shiota
    • 1
  • Yu-ichiro Izato
    • 1
  • Atsumi Miyake
    • 1
    • 2
  1. 1.Graduate School of Environment and Information SciencesYokohama National UniversityYokohamaJapan
  2. 2.Institute of Advanced SciencesYokohama National UniversityYokohamaJapan

Personalised recommendations