Skip to main content
Log in

Enhancing the performance of a linear Fresnel reflector using nanofluids and internal finned absorber

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The objective of this paper is to investigate thermal efficiency enhancement methods in a linear Fresnel reflector (LFR) with evacuated tube receiver. The primary reflectors of the collector are flat mirrors of 27 m2 total net aperture, while the secondary reflector has a parabolic shape. The working fluid is Syltherm 800, and the analysis is performed for temperatures up to 650 K. The use of nanofluids and internal fins is the investigated thermal enhancement methods in the receiver of the LFR. The examined nanofluid is Syltherm/CuO for concentrations 2, 4 and 6%, while the examined internal fins are 8 longitudinal fins which are symmetrically located in the absorber. The LFR is examined using nanofluids and pure thermal oil in smooth or finned absorber. According to the final results, the maximum thermal efficiency enhancement is up to 1% and it is greater for higher operating temperature levels. The use of internal fins is better enhancement method compared to the use of nanofluids, while the combination of these two techniques leads to the highest possible performance. For the inlet temperature of 600 K with 200 L min−1 flow rate, the thermal efficiency enhancement with 4% nanofluid and finned absorber is found 0.82%, while it is found 0.61 and 0.28% with finned absorber with pure oil and 4% nanofluid with smooth absorber, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

A a :

Collector net area, m2

C:

Concentration ratio

c p :

Specific heat capacity under constant pressure, J kg−1 K-1

D:

Diameter, m

D m :

Distance between reflectors

E :

Exergy, W

F :

Focal length, m

f :

Friction factor

G b :

Solar direct beam irradiation, W m−2

h :

Heat transfer coefficient, W m−2 K−1

h out :

Convection coefficient between cover and ambient, W m−2 K−1

k :

Thermal conductivity, W m−1 K−1

L :

Tube length, m

m:

Mass flow rate, kg s−1

N rf :

Number of primary reflectors

Nu :

Nusselt number

PEC:

Performance evaluation criterion

Pr :

Prandtl number

p :

Fin length, mm

Q :

Heat flux, W

Re :

Reynolds number

T :

Temperature, K

T am :

Ambient temperature, K

T 0 :

Reference temperature, K

t :

Fin thickness, mm

u :

Fluid velocity, m s−1

V :

Volumetric flow rate, L min−1

V wind :

Ambient air velocity, m s−1

W :

Total width, m

W p :

Pumping work, W

W 0 :

Mirror width, m

α :

Absorber absorbance

β :

Ratio of the nanolayer thickness to the original particle radius

γ :

Intercept factor

ε :

Emittance

ΔP :

Pressure drop, Pa

η ex :

Exergy efficiency

η opt :

Optical efficiency

η th :

Thermal efficiency

θ :

Solar incident angle, o

μ :

Dynamic viscosity, Pa s

ρ :

Density, kg m−3

ρ 1 :

Primary concentrator reflectance

ρ 2 :

Secondary concentrator reflectance

τ :

Cover transmittance

φ :

Nanoparticle volumetric concentration

ω :

Peripheral absorber angle, o

abs:

Absorbed

bf:

Base fluid

c:

Cover

ci:

Inner cover

co:

Outer cover

fm:

Mean fluid

in:

Inlet

loss:

Thermal loss

max:

Maximum

nf:

Nanofluid

np:

Nanoparticle

opt:

Optical

out:

Outlet

r:

Receiver

ri:

Inner receiver

ro:

Outer receiver

s:

Solar

th:

Theoretical

u:

Useful

0:

Reference case (smooth absorber and pure thermal oil)

LFR:

Linear Fresnel reflector

PTC:

Parabolic trough collector

References

  1. Sokhansefat T, Kasaeian A, Rahmani K, Heidari AH, Aghakhani F, Mahian O. Thermoeconomic and environmental analysis of solar flat plate and evacuated tube collectors in cold climatic conditions. Renew Energy. 2018;115:501–8.

    Article  Google Scholar 

  2. Fernandez AG, Galleguillos H, Fuentealba E, Perez FJ. Thermal characterization of HITEC molten salt for energy storage in solar linear concentrated technology. J Therm Anal Calorim. 2015;122(1):3–9.

    Article  CAS  Google Scholar 

  3. Sabiha MA, Saidur R, Mekhilef S, Mahian O. Progress and latest developments of evacuated tube solar collectors. Renew Sustain Energy Rev. 2015;51:1038–54.

    Article  Google Scholar 

  4. Abbas R, Martínez-Val JM. A comprehensive optical characterization of linear Fresnel collectors by means of an analytic study. Appl Energy. 2017;185(2):1136–51.

    Article  Google Scholar 

  5. Palomba V, Brancato V, Frazzica A. Experimental investigation of a latent heat storage for solar cooling applications. Appl Energy. 2017;199:347–58.

    Article  Google Scholar 

  6. Bellos E, Tzivanidis C, Symeou C, Antonopoulos KA. Energetic, exergetic and financial evaluation of a solar driven absorption chiller—a dynamic approach. Energy Convers Manag. 2017;131:34–48.

    Article  Google Scholar 

  7. Loni R, Kasaeian AB, Askari Asli-Ardeh E, Ghobadian B. Optimizing the efficiency of a solar receiver with tubular cylindrical cavity for a solar-powered organic Rankine cycle. Energy. 2016;112:1259–72.

    Article  CAS  Google Scholar 

  8. Montes MJ, Abbas R, Muñoz M, Muñoz-Antón J, Martínez-Val JM. Advances in the linear Fresnel single-tube receivers: hybrid loops with non-evacuated and evacuated receivers. Energy Convers Manag. 2017;49:318–33.

    Article  Google Scholar 

  9. Montes MJ, Barbero R, Abbas R, Rovira A. Performance model and thermal comparison of different alternatives for the Fresnel single-tube receiver. Appl Therm Eng. 2016;104:162–75.

    Article  Google Scholar 

  10. Morin G, Karl M, Mertins M, Selig M. Molten salt as a heat transfer fluid in a linear fresnel collector—commercial application backed by demonstration. Energy Proced. 2015;69:689–98.

    Article  CAS  Google Scholar 

  11. Zhu G, Wendelin T, Wagner MJ, Kutscher C. History, current state, and future of linear Fresnel concentrating solar collectors. Sol Energy. 2014;103:639–52.

    Article  Google Scholar 

  12. Boito P, Grena R. Optimization of the geometry of Fresnel linear collectors. Sol Energy. 2016;135:479–86.

    Article  Google Scholar 

  13. Sharma V, Nayak JK, Kedare SB. Effects of shading and blocking in linear Fresnel reflector field. Sol Energy. 2015;113:114–38.

    Article  Google Scholar 

  14. Benyakhlef S, Al Mers A, Merroun O, Bouatem A, Boutammachte N, El Alj S, Ajdad H, Erregueragui Z, Zemmouri E. Impact of heliostat curvature on optical performance of Linear Fresnel solar concentrators. Renew Energy. 2016;89:463–74.

    Article  Google Scholar 

  15. Sahoo SS, Singh S, Banerjee R. Steady state hydrothermal analysis of the absorber tubes used in Linear Fresnel Reflector solar thermal system. Sol Energy. 2013;87:84–95.

    Article  Google Scholar 

  16. Qiu Y, He Y-L, Wu M, Zheng Z-J. A comprehensive model for optical and thermal characterization of a linear Fresnel solar reflector with a trapezoidal cavity receiver. Renew Energy. 2016;97:129–44.

    Article  Google Scholar 

  17. Qiu Y, Li M-J, Wang K, Liu Z-B, Xue X-D. Aiming strategy optimization for uniform flux distribution in the receiver of a linear Fresnel solar reflector using a multi-objective genetic algorithm. Appl Energy. 2017;205:1394–407.

    Article  Google Scholar 

  18. Moghimi MA, Craig KJ, Meyer JP. Simulation-based optimisation of a linear Fresnel collector mirror field and receiver for optical, thermal and economic performance. Sol Energy. 2017;153:655–78.

    Article  Google Scholar 

  19. Facão J, Oliveira AC. Numerical simulation of a trapezoidal cavity receiver for a linear Fresnel solar collector concentrator. Renew Energy. 2011;36(1):90–6.

    Article  Google Scholar 

  20. Reddy KS, Kumar KR. Estimation of convective and radiative heat losses from an inverted trapezoidal cavity receiver of solar linear Fresnel reflector system. Int J Therm Sci. 2014;80:48–57.

    Article  Google Scholar 

  21. Canavarro D, Chaves J, Collares-Pereira M. Simultaneous Multiple Surface method for Linear Fresnel concentrators with tubular receiver. Sol Energy. 2014;110:105–16.

    Article  Google Scholar 

  22. Zhu G. New adaptive method to optimize the secondary reflector of linear Fresnel collectors. Sol Energy. 2017;144:117–26.

    Article  Google Scholar 

  23. Prasad GSC, Reddy KS, Sundararajan T. Optimization of solar linear Fresnel reflector system with secondary concentrator for uniform flux distribution over absorber tube. Sol Energy. 2017;150:1–12.

    Article  Google Scholar 

  24. Balaji S, Reddy KS, Sundararajan T. Optical modelling and performance analysis of a solar LFR receiver system with parabolic and involute secondary reflectors. Appl Energy. 2016;179:1138–51.

    Article  Google Scholar 

  25. Canavarro D, Chaves J, Collares-Pereira M. A novel compound elliptical-type concentrator for parabolic primaries with tubular receiver. Sol Energy. 2016;134:383–91.

    Article  Google Scholar 

  26. Grena R, Tarquini P. Solar linear Fresnel collector using molten nitrates as heat transfer fluid. Energy. 2011;36(2):1048–56.

    Article  CAS  Google Scholar 

  27. Bellos E, Mathioulakis E, Tzivanidis C, Belessiotis V, Antonopoulos KA. Experimental and numerical investigation of a linear Fresnel solar collector with flat plate receiver. Energy Convers Manag. 2016;130:44–59.

    Article  CAS  Google Scholar 

  28. Mathioulakis E, Papanicolaou E, Belessiotis V. Optical performance and instantaneous efficiency calculation of linear Fresnel solar collectors. Int J Energy Res. 2017;1–15. https://doi.org/10.1002/er.3925.

  29. Pauletta S. A solar Fresnel collector based on an evacuated flat receiver. Energy Proced. 2016;101:480–7.

    Article  Google Scholar 

  30. Lin M, Sumathy K, Dai YJ, Wang RZ, Chen Y. Experimental and theoretical analysis on a linear Fresnel reflector solar collector prototype with V-shaped cavity receiver. Appl Therm Eng. 2013;51(1–2):963–72.

    Article  Google Scholar 

  31. Choi SU, Eastman J. Enhancing thermal conductivity of fluids with nanoparticles. Lemont: Argonne National Lab; 1995.

    Google Scholar 

  32. Bellos E, Tzivanidis C. Parametric investigation of nanofluids utilization in parabolic trough collectors. Therm Sci Eng Prog. 2017;2:71–9.

    Article  Google Scholar 

  33. Mahian O, Kianifar A, Sahin AZ, Wongwises S. Entropy generation during Al2O3/water nanofluid flow in a solar collector: effects of tube roughness, nanoparticle size, and different thermophysical models. Int J Heat Mass Transf. 2014;78:64–75.

    Article  CAS  Google Scholar 

  34. Bellos E, Tzivanidis C, Tsimpoukis D. Thermal, hydraulic and exergetic evaluation of a parabolic trough collector operating with thermal oil and molten salt based nanofluids. Energy Convers Manag. 2018;156(15):388–402.

    Article  CAS  Google Scholar 

  35. Kaloudis E, Papanicolaou E, Belessiotis V. Numerical simulations of a parabolic trough solar collector with nanofluid using a two-phase model. Renew Energy. 2016;97:218–29.

    Article  CAS  Google Scholar 

  36. Sokhansefat T, Kasaeian AB, Kowsary F. Heat transfer enhancement in parabolic trough collector tube using Al2O3/synthetic oil nanofluid. Renew Sustain Energy Rev. 2014;33:636–44.

    Article  CAS  Google Scholar 

  37. Bellos E, Tzivanidis C, Antonopoulos KA, Gkinis G. Thermal enhancement of solar parabolic trough collectors by using nanofluids and converging-diverging absorber tube. Renew Energy. 2016;94:213–22.

    Article  CAS  Google Scholar 

  38. Mwesigye A, Huan Z. Thermodynamic analysis and optimization of fully developed turbulent forced convection in a circular tube with water–Al2O3 nanofluid. Int J Heat Mass Transf. 2015;89:694–706.

    Article  CAS  Google Scholar 

  39. Mwesigye A, Huan Z, Meyer JP. Thermodynamic optimisation of the performance of a parabolic trough receiver using synthetic oil–Al2O3 nanofluid. Appl Energy. 2015;156:398–412.

    Article  CAS  Google Scholar 

  40. Kasaeian A, Daviran S, Azarian RD, Rashidi A. Performance evaluation and nanofluid using capability study of a solar parabolic trough collector. Energy Convers Manag. 2015;89:368–75.

    Article  CAS  Google Scholar 

  41. Muñoz J, Abánades A. A technical note on application of internally finned tubes in solar parabolic trough absorber pipes. Sol Energy. 2011;85(3):609–12.

    Article  Google Scholar 

  42. Muñoz J, Abánades A. Analysis of internal helically finned tubes for parabolic trough design by CFD tools. Appl Energy. 2011;88:4139–49.

    Article  Google Scholar 

  43. Bellos E, Tzivanidis C, Daniil I. Energetic and exergetic investigation of a parabolic trough collector with internal fins operating with carbon dioxide. Int J Energy Environ Eng. 2017;8(2):109–22.

    Article  CAS  Google Scholar 

  44. Bellos E, Tzivanidis C, Daniil I, Antonopoulos KA. The impact of internal longitudinal fins in parabolic trough collectors operating with gases. Energy Convers Manag. 2017;135:35–54.

    Article  CAS  Google Scholar 

  45. Bellos E, Tzivanidis C, Tsimpoukis D. Thermal enhancement of parabolic trough collector with internally finned absorbers. Sol Energy. 2017;157:514–31.

    Article  Google Scholar 

  46. Bellos E, Tzivanidis C, Tsimpoukis D. Multi-criteria evaluation of parabolic trough collector with internally finned absorbers. Appl Energy. 2017;205:540–61.

    Article  Google Scholar 

  47. Too YCS, Benito R. Enhancing heat transfer in air tubular absorbers for concentrated solar thermal applications. Appl Therm Eng. 2013;50(1):1076–83.

    Article  CAS  Google Scholar 

  48. Jaramillo OA, Borunda M, Velazquez-Lucho KM, Robles M. Parabolic trough solar collector for low enthalpy processes: an analysis of the efficiency enhancement by using twisted tape inserts. Renew Energy. 2016;93:125–41.

    Article  Google Scholar 

  49. Bellos E, Tzivanidis C. Parametric analysis and optimization of an Organic Rankine Cycle with nanofluid based solar parabolic trough collectors. Renew Energy. 2017;114B:1376–93.

    Article  Google Scholar 

  50. http://www.loikitsdistribution.com/files/syltherm-800-technical-data-sheet.pdf.

  51. Bellos E, Tzivanidis C, Antonopoulos KA. A detailed working fluid investigation for solar parabolic trough collectors. Appl Therm Eng. 2017;114:374–86.

    Article  CAS  Google Scholar 

  52. Bellos E, Tzivanidis C. A detailed exergetic analysis of parabolic trough collectors. Energy Convers Manag. 2017;149:275–92.

    Article  Google Scholar 

  53. Petela R. Exergy of undiluted thermal radiation. Sol Energy. 2003;74(6):469–88.

    Article  Google Scholar 

  54. Leinhard J IV, Leinhard J V. A heat transfer textbook. Cambridge: Phlogiston Press; 2012.

    Google Scholar 

  55. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf. 1998;11:151–70.

    Article  CAS  Google Scholar 

  56. Mwesigye A, Huan Z, Meyer JP. Thermal performance of a receiver tube for a high concentration ratio parabolic trough system and potential for improved performance with Syltherm 800-CuO nanofluid. In: Proceedings of the ASME 2015 international mechanical engineering congress and exposition IMECE2015 November 13–19, 2015, Houston, Texas.

  57. Loni R, Kasaeian AB, Mahian O, Sahin AZ. Thermodynamic analysis of an organic rankine cycle using a tubular solar cavity receiver. Energy Convers Manag. 2016;127:494–503.

    Article  CAS  Google Scholar 

  58. Khanafer K, Vafai K. A critical synthesis of thermophysical characteristics of nanofluids. Int J Heat Mass Transf. 2011;54(19):4410–28.

    Article  CAS  Google Scholar 

  59. Yu W, Choi SUS. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanopart Res. 2003;5:167.

    Article  CAS  Google Scholar 

  60. Duangthongsuk W, Wongwises S. An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime. Int J Heat Mass Transf. 2010;53(1–3):334–44.

    Article  CAS  Google Scholar 

  61. Batchelor GK. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech. 1977;83:97–117.

    Article  Google Scholar 

  62. SOLIDWORKS Flow Simulation 2015 Technical Reference.

  63. Bellos E, Korres D, Tzivanidis C, Antonopoulos KA. Design, simulation and optimization of a compound parabolic collector. Sustain Energy Technol Assess. 2016;16:53–63.

    Google Scholar 

  64. Pavlović SR, Bellos E, Stefanović VP, Tzivanidis C, Stamenković ZM. Design, simulation and optimization of a solar dish collector spiral-coil thermal absorber. Thermal Sci. 2016;20(4):1387–97.

    Article  Google Scholar 

  65. Tzivanidis C, Bellos E, Korres D, Antonopoulos KA, Mitsopoulos G. Thermal and optical efficiency investigation of a parabolic trough collector. Case Stud Therm Eng. 2015;6:226–37.

    Article  Google Scholar 

  66. Bellos E, Tzivanidis C, Korres D, Antonopoulos KA. Thermal analysis of a flat plate collector with Solidworks and determination of convection heat coefficient between water and absorber. In: Proceedings of “the 28th international conference on efficiency, cost, optimization, simulation and environmental impact of energy systems”, 30th June—3rd July 2015 Pau, France.

  67. Swinbank WC. Long-wave radiation from clear skies. QJR Meteorol Soc. 1963;89:339–40.

    Article  Google Scholar 

  68. Qiu Y, Li M-J, He Y-L, Tao W-Q. Thermal performance analysis of a parabolic trough solar collector using supercritical CO2 as heat transfer fluid under non-uniform solar flux. Appl Therm Eng. 2017;115:1255–65.

    Article  CAS  Google Scholar 

  69. Behar O, Khellaf A, Mohammedi K. A novel parabolic trough solar collector model—validation with experimental data and comparison to engineering equation solver (EES). Energy Convers Manag. 2015;106:268–81.

    Article  Google Scholar 

  70. Mwesigye A, Bello-Ochende T, Meyer JP. Heat transfer and thermodynamic performance of a parabolic trough receiver with centrally placed perforated plate inserts. Appl Energy. 2014;136:989–1003.

    Article  Google Scholar 

  71. Mwesigye A, Bello-Ochende T, Meyer JP. Heat transfer and entropy generation in a parabolic trough receiver with wall-detached twisted tape inserts. Int J Therm Sci. 2016;99:238–57.

    Article  Google Scholar 

Download references

Acknowledgements

Dr. Evangelos Bellos would like to thank “Bodossaki Foundation” for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelos Bellos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellos, E., Tzivanidis, C. & Papadopoulos, A. Enhancing the performance of a linear Fresnel reflector using nanofluids and internal finned absorber. J Therm Anal Calorim 135, 237–255 (2019). https://doi.org/10.1007/s10973-018-6989-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-6989-1

Keywords

Navigation