Journal of Thermal Analysis and Calorimetry

, Volume 132, Issue 2, pp 1317–1323 | Cite as

Comparative study on pyrolysis characteristics and kinetics of lignocellulosic biomass and seaweed

  • Xinyun Wang
  • Xin Wang
  • Guoxu Qin
  • Mingqiang Chen
  • Jun Wang
Article
  • 92 Downloads

Abstract

The pyrolysis characteristics and kinetics of lignocellulosic biomass (cotton stalk) and seaweed (Gracilaria lemaneiformis) were studied comparatively. Results of the thermal degradation processes showed that the pyrolysis occurence of G. lemaneiformis is easier than that of cotton stalk. However, G. lemaneiformis released less volatile components and produced more solid residues. As the heating rate increased, the maximum mass loss rates for cotton stalk were decreased, while those for G. lemaneiformis were increased. Results of the kinetic analysis by Popescu method indicated that the pyrolysis mechanism of cotton stalk is three-dimensional diffusion, which can be described by Zhuralev, Lesokin, and Tempelmen (Z–L–T) equation \((G(\alpha ) = \{ [1/(1 - \alpha )]^{1/3} - 1\}^{2} )\), whereas that of G. lemaneiformis is random nucleation and nuclei growth, which can be described by Avrami–Erofeev equation \((G(\alpha ) = [ - \ln (1 - \alpha )]^{1/4} )\). The average activation energy values (192.17 and 146.11 kJ mol−1, respectively) of cotton stalk and G. lemaneiformis obtained by Popescu method are similar with those (189.88 and 153.79 kJ mol−1, respectively) calculated by Flynn–Wall–Ozawa (FWO) method. Moreover, the average activation energy of G. lemaneiformis is lower than that of cotton stalk.

Keywords

Pyrolysis characteristics Kinetics Lignocellulosic biomass Seaweed 

Notes

Acknowledgements

The authors wish to acknowledge the financial support by the Anhui Province Prominent Young Talents Support Program (gxyq2017072) and the National Natural Science Foundation of China (20676002).

References

  1. 1.
    Du ZY, Li YC, Wang XQ, Wan YQ, Chen Q, Wang CG, Lin XY, Liu YH, Chen P, Ruan R. Microwave-assisted pyrolysis of microalgae for biofuel production. Bioresour Technol. 2011;102:4890–6.CrossRefGoogle Scholar
  2. 2.
    Wang N, Tahmasebi A, Yu JL, Xu J, Huang F, Mamaeva A. A comparative study of microwave-induced pyrolysis of lignocellulosic and algal biomass. Bioresour Technol. 2015;190:89–96.CrossRefGoogle Scholar
  3. 3.
    Wang XY, Qin GX, Chen MQ, Wang J. Microwave-assisted pyrolysis of cotton stalk with additives. BioResources. 2016;11:6125–36.Google Scholar
  4. 4.
    Zou SP, Wu YL, Yang MD, Li C, Tong JM. Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer. Bioresour Technol. 2010;101:359–65.CrossRefGoogle Scholar
  5. 5.
    Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta. 1999;340:53–68.CrossRefGoogle Scholar
  6. 6.
    Damartzis T, Vamvuka D, Sfakiotakis S, Zabaniotou A. Thermal degradation studies and kinetic modeling of cardoon (Carnaracardunculus) pyrolysis using thermogravimetric analysis (TGA). Bioresour Technol. 2011;102:6230–8.CrossRefGoogle Scholar
  7. 7.
    Cao Q, Xie KC, Bao WR, Shen SG. Pyrolytic behavior of waste corn cob. Bioresour Technol. 2004;94:83–9.CrossRefGoogle Scholar
  8. 8.
    Khawam A, Flanagan DR. Complementary use of model-free and modelistic methods in the analysis of solid-state kinetics. J Phys Chem B. 2005;109:10073–80.CrossRefGoogle Scholar
  9. 9.
    Opfermann JR, Kaisersberger E, Flammersheim HJ. Model-free analysis of thermoanalytical data-advantages and limitations. Thermochim Acta. 2002;391:119–27.CrossRefGoogle Scholar
  10. 10.
    Cai JM, Bi LS. Kinetic analysis of wheat straw pyrolysis using isoconversional methods. J Therm Anal Calorim. 2009;98:325–30.CrossRefGoogle Scholar
  11. 11.
    Kim SS, Kim J, Park YH, Park YK. Pyrolysis kinetics and decomposition characteristics of pine trees. Bioresour Technol. 2010;101:9797–802.CrossRefGoogle Scholar
  12. 12.
    Slopiecka K, Bartocci P, Fantozzi F. Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl Energy. 2012;97:491–7.CrossRefGoogle Scholar
  13. 13.
    Gai C, Dong YP, Zhang TH. The kinetic analysis of the pyrolysis of agricultural residue under non-isothermal conditions. Bioresour Technol. 2013;127:298–305.CrossRefGoogle Scholar
  14. 14.
    Wilson L, Yang W, Blasiak W, John GR, Mhilu CF. Thermal characterization of tropical biomass feedstocks. Energy Convers Manag. 2011;52:191–8.CrossRefGoogle Scholar
  15. 15.
    Ceylan S, Topçu Y. Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis. Bioresour Technol. 2014;156:182–8.CrossRefGoogle Scholar
  16. 16.
    Debal M, Girods P. TG-FTIR kinetic study of the thermal cleaning of wood laminated flooring waste. J Therm Anal Calorim. 2014;118:141–51.CrossRefGoogle Scholar
  17. 17.
    Ross AB, Jones JM, Kubacki ML, Bridgeman T. Classification of macroalgae as fuel and its thermochemical behaviour. Bioresour Technol. 2008;99:6494–504.CrossRefGoogle Scholar
  18. 18.
    Li DM, Chen LM, Yi XJ, Zhang XW, Ye NH. Pyrolytic characteristics and kinetics of two brown algae and sodium alginate. Bioresour Technol. 2010;101:7131–6.CrossRefGoogle Scholar
  19. 19.
    Li DM, Chen LM, Zhang XW, Ye NH, Xing FG. Pyrolytic characteristics and kinetic studies of three kinds of red algae. Biomass Bioenergy. 2011;35:1765–72.CrossRefGoogle Scholar
  20. 20.
    Zhao H, Yan HX, Dong SS, Zhang Y, Sun BB, Zhang CW, Ai YX, Chen BQ, Liu Q, Sui TT, Qin S. Thermogravimetry study of the pyrolytic characteristics and kinetics of macro-algae Macrocystis pyrifera residue. J Therm Anal Calorim. 2013;111:1685–90.CrossRefGoogle Scholar
  21. 21.
    Ceylan S, Topcu Y, Eylan Z. Thermal behaviour and kinetics of alga Polysiphonia elongata biomass during pyrolysis. Bioresour Technol. 2014;171:193–8.CrossRefGoogle Scholar
  22. 22.
    Wu KJ, Liu J, Wu YL, Chen Y, Li QH, Xiao X, Yang MD. Pyrolysis characteristics and kinetics of aquatic biomass using thermogravimetric analyzer. Bioresour Technol. 2014;163:18–25.CrossRefGoogle Scholar
  23. 23.
    Wang J, Wang GC, Zhang MX, Chen MQ, Li DM, Min FF, Chen MG, Zhang SP, Ren ZW, Yan YJ. A comparative study of thermolysis characteristics and kinetics of seaweeds and fir wood. Process Biochem. 2006;41:1883–6.CrossRefGoogle Scholar
  24. 24.
    Popescu C. Integral method to analyze the kinetics of heterogeneous reactions under non-isothermal conditions: a variant on the Ozawa–Flynn–Wall method. Thermochim Acta. 1996;285:309–23.CrossRefGoogle Scholar
  25. 25.
    Shen CS, Zhou CR. Investigation of the thermal decomposition kinetics of bezafibrate. J Therm Anal Calorim. 2016;126:959–67.CrossRefGoogle Scholar
  26. 26.
    Wu JZ, Wang BF, Cheng FQ. Thermal and kinetic characteristics of combustion of coal sludge. J Therm Anal Calorim. 2017;129:1899–909.CrossRefGoogle Scholar
  27. 27.
    Yang HP, Yan R, Chen HP, Lee D, Zheng CG. Characteristics of hemicellulose, cellulose and lignin. Fuel. 2007;86:1781–8.CrossRefGoogle Scholar
  28. 28.
    Park HJ, Park YK, Dong J, Kim JS, Jeon JK, Kim SS, Kim J. Pyrolysis characteristics of Oriental white oak:kinetic study and fast pyrolysis in a fluidized bed with an improved reaction system. Fuel Process Technol. 2009;90:186–95.CrossRefGoogle Scholar
  29. 29.
    Yanik J, Stahl R, Troeger N, Sinag A. Pyrolysis of algal biomass. J Anal Appl Pyrol. 2013;103:134–41.CrossRefGoogle Scholar
  30. 30.
    Anastasakis K, Ross AB, Jones JM. Pyrolysis behaviour of the main carbohydrates of brown macro-algae. Fuel. 2011;90:598–607.CrossRefGoogle Scholar
  31. 31.
    Vo TK, Ly HV, Lee OK, Lee EY, Kim CH, Seo JW, Kim J, Kim SS. Pyrolysis characteristics and kinetics of microalgal Aurantiochytrium sp. KRS101. Energy. 2017;118:369–76.CrossRefGoogle Scholar
  32. 32.
    Li DM, Chen LM, Chen SL, Zhang XW, Chen FJ, Ye NH. Comparative evaluation of the pyrolytic and kinetic characteristics of a macroalga (Sargassum thunbergii) and a freshwater plant (Potamogeton crispus). Fuel. 2012;96:185–91.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Xinyun Wang
    • 1
  • Xin Wang
    • 1
  • Guoxu Qin
    • 1
  • Mingqiang Chen
    • 2
  • Jun Wang
    • 2
  1. 1.School of Chemistry and Materials EngineeringChaohu UniversityChaohuChina
  2. 2.School of Chemical EngineeringAnhui University of Science and TechnologyHuainanChina

Personalised recommendations