Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 133, Issue 1, pp 261–269 | Cite as

Reduction mechanism of WO3 + CuO mixture by combined Mg/C reducer

Non-isothermal conditions—high heating rates
  • S. V. Aydinyan
  • Kh. T. Nazaretyan
  • A. G. Zargaryan
  • M. E. Tumanyan
  • S. L. Kharatyan
Article
  • 40 Downloads

Abstract

The mechanism and kinetics of tungsten and copper oxides joint reduction by Mg + C combined reducer was studied at high heating rates by thermal analysis method utilizing high-speed temperature scanner. The effective values of activation energy for magnesiothermic reduction stage for the binary (WO3–Mg, CuO–Mg), ternary (WO3–Mg–C, CuO–Mg–C, WO3–CuO–Mg) and quaternary (WO3–CuO–Mg–C) systems were determined in a new and wide range of heating rates (Vh = 100–5200 °C min−1). It was shown that for all the systems under study the increasing of heating rate shifts T* values toward to high-temperature area and unlike the low heating rates (Vh = 5–20 °C min−1, DTA/DTG studies) at high heating rates Mg always participates in molten state. In addition, by varying heating rates of reagents it was possible to separate the main stages and analyze intermediate compounds, making useful tool for the exploration of interaction mechanism in the complex systems. On the other hand, the tendency of merging of metals reduction stages at higher heating rates has an essential practical interest. That is, simultaneous reduction in metals is very prominent for obtaining metal composites with more homogeneous microstructure.

Keywords

Metal oxides reduction Mg/C combined reducer High-speed temperature scanner High heating rate Activation energy 

Notes

Acknowledgements

This work was financially supported by the International Science and Technology Center (Project No. A-2123).

References

  1. 1.
    Habashi F. Alloys: preparation, properties, applications. New York: Wiley; 2008.Google Scholar
  2. 2.
    Selvakumar N, Vettivel SC. Thermal, electrical and wear behavior of sintered Cu–W nanocomposite. Mater Des. 2013;46:16–25.CrossRefGoogle Scholar
  3. 3.
    Minakova RV, Lesnik ND, Kresanova AP, Flis AA, Khomenko EV. Contact interaction, structure, and properties of W (Mo, Cr)–Cu composites with additives. Powder Metall Met Cer. 1996;35(7):363–71.CrossRefGoogle Scholar
  4. 4.
    Bukhanovs’kyi VV, Rudnyts’kyi MP, Kharchenko VV, Minakova RV, Grechanyuk MI, Mamuzic I. Relationship between composition, structure, and mechanical properties of a condensed composite of copper–tungsten system. Strength Mater. 2011;43(4):426–37.CrossRefGoogle Scholar
  5. 5.
    Bukhanovskii VV, Minakova RV, Grechanyuk IN, Mamuziæ I, Rudnitskii NP. Effect of composition and heat treatment on the structure and properties of condensed composites of the Cu–W system. Met Sci Heat Treat. 2011;53(1-2):14–23.CrossRefGoogle Scholar
  6. 6.
    Kaczmar JW, Pietrzak K, Włosiński W. The production and application of metal matrix composite materials. J Mater Process Technol. 2000;106(1):58–67.CrossRefGoogle Scholar
  7. 7.
    Dorfman LP, Scheithauer MJ, Paliwal M, Houck DL, Spencer JR. Alloy for electrical contacts and electrodes and method of making. U.S. Patent No. 6,375,708; 2002.Google Scholar
  8. 8.
    Rani AM, Mahamat AZ, Ab Adzis AH. Novel nano copper-tungsten-based EDM electrode. In: Viswanatha Sharma K, Hisham B Hamid N, editors. Engineering applications of nanotechnology. Berlin: Springer; 2017. p. 193–224.CrossRefGoogle Scholar
  9. 9.
    He L, Yu J, Duan W, Liu Z, Yin S, Luo H. Copper–tungsten electrode wear process and carbon layer characterization in electrical discharge machining. Int J Adv Manuf Technol. 2016;85(5-8):1759–68.CrossRefGoogle Scholar
  10. 10.
    Guo TB, Zhao JY, Ding YT. Microstructure and properties of tungsten copper composite material. In: Materials science forum, vol 788. Trans Tech Publications; 2014, pp 646–51.Google Scholar
  11. 11.
    Chen CF, Pokharel R, Brand MJ, Tegtmeier EL, Clausen B, Dombrowski DE, Ickes TL, Lebensohn RA. Processing and consolidation of copper/tungsten. J Mater Sci. 2017;52(2):1172–82.CrossRefGoogle Scholar
  12. 12.
    Daoush WM, Yao J, Shamma M, Morsi K. Ultra-rapid processing of high-hardness tungsten–copper nanocomposites. Scr Mater. 2016;113:246–9.CrossRefGoogle Scholar
  13. 13.
    Xu L, Srinivasakannan C, Zhang L, Yan M, Peng J, Xia H, Guo S. Fabrication of tungsten–copper alloys by microwave hot pressing sintering. J Alloys Compd. 2016;658:23–8.CrossRefGoogle Scholar
  14. 14.
    Lin D, Han JS, Kwon YS, Ha S, Bollina R, Park SJ. High-temperature compression behavior of W–10 wt% Cu composite. Int J Refract Met Hard Mater. 2015;53:87–91.CrossRefGoogle Scholar
  15. 15.
    Duan L, Lin W, Wang J, Yang G. Thermal properties of W–Cu composites manufactured by copper infiltration into tungsten fiber matrix. Int J Refract Met Hard Mater. 2014;46:96–100.CrossRefGoogle Scholar
  16. 16.
    Xi X, Xu X, Nie Z, He S, Wang W, Yi J, Tieyong Z. Preparation of W–Cu nano-composite powder using a freeze-drying technique. Int J Refract Met Hard Mater. 2010;28(2):301–4.CrossRefGoogle Scholar
  17. 17.
    Basu AK, Sale FR. Copper-tungsten composite powders by the hydrogen reduction of copper tungstate. J Mater Sci. 1978;13(12):2703–11.CrossRefGoogle Scholar
  18. 18.
    Raghu T, Sundaresan R, Ramakrishnan P, Mohan TR. Synthesis of nanocrystalline copper–tungsten alloys by mechanical alloying. Mater Sci Eng A. 2001;304:438–41.CrossRefGoogle Scholar
  19. 19.
    Jech DE, Juan LS, Anthony BT. Process for making improved copper/tungsten composites. U.S. Patent No. 5,686,676; 1997.Google Scholar
  20. 20.
    Kirakosyan HV, Aydinyan SV, Kharatyan SL. W–Cu composite powders obtained by joint reduction of oxides in combustion mode. Int J SHS. 2016;25(4):215–23.Google Scholar
  21. 21.
    Aydinyan SV, Kirakosyan HV, Zakaryan MK, Kharatyan SL. Combustion synthesis of W–Cu composite powders from oxide precursors with various proportions of metals. Int J Refract Met Hard Mater. 2017;64:176–83.CrossRefGoogle Scholar
  22. 22.
    Aydinyan SV, Kirakosyan HV, Kharatyan SL. Cu–Mo composite powders obtained by combustion-coreduction process. Int J Refract Met Hard Mater. 2016;54:455–63.CrossRefGoogle Scholar
  23. 23.
    Nepapushev AA, Kirakosyan KG, Moskovskikh DO, Kharatyan SL, Rogachev AS, Mukasyan AS. Influence of high-energy ball milling on reaction kinetics in the Ni–Al system: an electrothermorgaphic study. Int J SHS. 2015;24(1):21–8.Google Scholar
  24. 24.
    Hobosyan MA, Kirakosyan KG, Kharatyan SL, Martirosyan KS. PTFE–Al2O3 reactive interaction at high heating rates. J Therm Anal Calorim. 2015;119(1):245–51.CrossRefGoogle Scholar
  25. 25.
    Hobosyan MA, Kirakosyan KG, Kharatyan SL, Martirosyan KS. Study of dynamic features of highly energetic reactions by DSC and high-speed temperature scanner (HSTS). In: MRS proceedings. Cambridge University Press. 2013; p 1521.Google Scholar
  26. 26.
    Baghdasaryan AM, Niazyan OM, Khachatryan HL, Kharatyan SL. DTA/TG study of tungsten oxide and ammonium tungstate reduction by (Mg + C) combined reducers at non-isothermal conditions. Int J Refract Met Hard Mater. 2014;43:216–21.CrossRefGoogle Scholar
  27. 27.
    Baghdasaryan AM, Niazyan OM, Khachatryan HL, Kharatyan SL. DTA/TG study of molybdenum oxide reduction by Mg/Zn & Mg/C combined reducers at non-isothermal conditions. Int J Refract Met Hard Mater. 2015;51:315–23.CrossRefGoogle Scholar
  28. 28.
    Kirakosyan HV, Minasyan TT, Niazyan OM, Aydinyan SV, Kharatyan SL. DTA/TGA study of CuO and MoO3 co-reduction by combined Mg/C reducers. J Therm Anal Calorim. 2016;123:35–41.CrossRefGoogle Scholar
  29. 29.
    Niazyan OM, Aydinyan SV, Kharatyan SL. DTA/TG study of reduction mechanism of WO3 + CuO mixture by combined Mg/C reducer. Chem J Armenia. 2016;69(4):399–406.Google Scholar
  30. 30.
    Aydinyan S, Kirakosyan H, Niazyan O, Tumanyan M, Nazaretyan Kh, Kharatyan S. Reaction pathway in the WO3–CuO–Mg–C system at nonisothermal conditions. Armen J Phys. 2016;9(1):83–8.Google Scholar
  31. 31.
    Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404(1-2):163–76.CrossRefGoogle Scholar
  32. 32.
    Wang LL, Munir ZA, Maximov YM. Review, Thermite reactions: their utilization synthesis and processing of materials. J Mater Sci. 1993;28:3693–708 (Primary source: G.D. MILLER, Thermochim. Acta 34 (1979) 357).CrossRefGoogle Scholar
  33. 33.
    Hosseini SG, Sheikhpour A, Keshavarz MH, Tavangar S. The effect of metal oxide particle size on the thermal behavior and ignition kinetic of Mg–CuO thermite mixture. Thermochim Acta. 2016.  https://doi.org/10.1016/j.tca.2016.01.005.Google Scholar
  34. 34.
    Schoenitz M, Umbrajkar S, Dreizin EL. Kinetic analysis of thermite reactions in Al–MoO3 nanocomposites. J Propuls Power. 2007.  https://doi.org/10.2514/1.24853.Google Scholar
  35. 35.
    Wang Y, et al. Energy release characteristics of impact-initiated energetic aluminum–magnesium mechanical alloy particles with nanometer-scale structure. Thermochim Acta. 2011;512(1):233–9.CrossRefGoogle Scholar
  36. 36.
    Sheikhpour A, Hosseini SG, Tavangar S, Keshavarz MH. The influence of magnesium powder on the thermal behavior of Al–CuO thermite mixture. J Therm Anal Calorim. 2017;129(3):1847–54.  https://doi.org/10.1007/s10973-017-6343-z.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Laboratory of Kinetics of SHS ProcessesA.B. Nalbandyan Institute of Chemical Physics NAS RAYerevanArmenia
  2. 2.Department of Inorganic and Analytical ChemistryYerevan State UniversityYerevanArmenia
  3. 3.Material and Industrial EngineeringTallinn University of TechnologyTallinnEstonia

Personalised recommendations