Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 132, Issue 2, pp 835–842 | Cite as

Analysis and characterization of the transition from the Arrhenius to non-Arrhenius structural relaxation in fragile glass-forming liquids

  • Masahiro Ikeda
  • Masaru Aniya
Article

Abstract

We have studied the transition from an Arrhenius-like to a non-Arrhenius-like structural relaxation behavior in fragile glass-forming liquids. This transition is denoted by the temperature TA that usually occurs above the melting point Tm and the dynamic crossover temperature TB. Recent studies reveal that TA is a characteristic temperature related with the dynamical properties of the system. However, its unambiguous determination is not easy. In this work, a method to obtain the temperature TA from the experimental data of α-relaxation time is presented. The obtained TA is compared with the cooperativity onset temperature Tx extracted from the bond strength–coordination number fluctuation model. The result reveals that TA is close to Tx for fragile liquids. From the result of the present analyses combined with the linear relation Tx \(\propto\) T0, where T0 is the Vogel temperature, the Arrhenius crossover phenomenon in fragile liquids is linked to the low-temperature structural relaxation dynamics.

Keywords

Arrhenius crossover Cooperativity onset temperature Ideal glass-transition temperature 

References

  1. 1.
    Angell CA. Relaxation in liquids, polymers and plastic crystals—strong/fragile patterns and problems. J Non Cryst Solids. 1991;131–133:13–31.CrossRefGoogle Scholar
  2. 2.
    Angell CA, Green JL, Ito K, Lucas P, Richards BE. Glassformer fragilities and landscape excitation profiles by simple calorimetric and theoretical methods. J Therm Anal Calorim. 1999;57:717–36.CrossRefGoogle Scholar
  3. 3.
    Novikov VN, Sokolov AP. Poisson’s ratio and the fragility of glass-forming liquids. Nature. 2004;431:961–3.CrossRefGoogle Scholar
  4. 4.
    Kokshenev VB. Characteristic temperatures of liquid–glass transition. Physica A. 1999;262:88–97.CrossRefGoogle Scholar
  5. 5.
    Saiter A, Delbreilh L, Couderc H, Arabeche K, Schönhals A, Saiter J-M. Temperature dependence of the characteristic length scale for glassy dynamics: combination of dielectric and specific heat spectroscopy. Phys Rev E. 2010;81:041805.CrossRefGoogle Scholar
  6. 6.
    Martinez-Garcia JC, Martinez-Garcia J, Rzoska SJ, Hulliger J. The new insight into dynamic crossover in glass forming liquids from the apparent enthalpy analysis. J Chem Phys. 2012;137:064501.CrossRefGoogle Scholar
  7. 7.
    Popova VA, Surovtsev NV. Transition from Arrhenius to non-Arrhenius temperature dependence of structural relaxation time in glass-forming liquids: continuous versus discontinuous scenario. Phys Rev E. 2014;90:032308.CrossRefGoogle Scholar
  8. 8.
    Schmidtke B, Petzold N, Kahlau R, Rössler EA. Reorientational dynamics in molecular liquids as revealed by dynamic light scattering: from boiling point to glass transition temperature. J Chem Phys. 2013;139:084504.CrossRefGoogle Scholar
  9. 9.
    Popova VA, Malinovskii VK, Surovtsev NV. Temperature of nanometer-scale structure appearance in glasses. Glass Phys Chem. 2013;39:124–9.CrossRefGoogle Scholar
  10. 10.
    Koštál P, Hofírek T, Málek J. Viscosity measurement by thermomechanical analyzer. J Non Cryst Solids. 2018;480:118–22.CrossRefGoogle Scholar
  11. 11.
    Kondratiev A, Khvan AV. Analysis of viscosity equations relevant to silicate melts and glasses. J Non Cryst Solids. 2016;432:366–83.CrossRefGoogle Scholar
  12. 12.
    Jaiswal A, Egami T, Kelton KF, Schweizer KS, Zhang Y. Correlation between fragility and the Arrhenius crossover phenomenon in metallic, molecular, and network liquids. Phys Rev Lett. 2016;117:205701.CrossRefGoogle Scholar
  13. 13.
    Pan S, Wu ZW, Wang WH, Li MZ, Xu L. Structural origin of fractional Stokes–Einstein relation in glass-forming liquids. Sci Rep. 2017;7:39938.CrossRefGoogle Scholar
  14. 14.
    Novikov VN. Connection between the glass transition temperature T g and the Arrhenius temperature T A in supercooled liquids. Chem Phys Lett. 2016;659:133–6.CrossRefGoogle Scholar
  15. 15.
    Surovtsev NV. On the glass-forming ability and short-range bond ordering of liquids. Chem Phys Lett. 2009;477:57–9.CrossRefGoogle Scholar
  16. 16.
    Saiter A, Couderc H, Grenet J. Characterisation of structural relaxation phenomena in polymeric materials from thermal analysis investigations. J Therm Anal Calorim. 2007;88:483–8.CrossRefGoogle Scholar
  17. 17.
    Schröter K. Glass transition of heterogeneous polymeric systems studied by calorimetry. J Therm Anal Calorim. 2009;98:591–9.CrossRefGoogle Scholar
  18. 18.
    Saiter JM, Grenet J, Dargent E, Saiter A, Delbreilh L. Glass transition temperature and value of the relaxation time at T g in vitreous polymers. Macromol Symp. 2007;258:152–61.CrossRefGoogle Scholar
  19. 19.
    Stickel F, Fischer EW, Richert R. Dynamics of glass-forming liquids. II. Detailed comparison of dielectric relaxation, dc-conductivity, and viscosity data. J Chem Phys. 1996;104:2043–55.CrossRefGoogle Scholar
  20. 20.
    Schmidtke B, Petzold N, Pötzschner B, Weingärtner H, Rössler EA. Relaxation stretching, fast dynamics, and activation energy: a comparison of molecular and ionic liquids as revealed by depolarized light scattering. J Phys Chem B. 2014;118:7108–18.CrossRefGoogle Scholar
  21. 21.
    Louzguine-Luzgin DV, Louzguina-Luzgina LV, Fecht H. On limitations of the viscosity versus temperature plot for glass-forming substances. Mater Lett. 2016;182:355–8.CrossRefGoogle Scholar
  22. 22.
    Ikeda M, Aniya M. A measure of cooperativity in non-Arrhenius structural relaxation in terms of the bond strength–coordination number fluctuation model. Eur Polym J. 2017;86:29–40.CrossRefGoogle Scholar
  23. 23.
    Aniya M. A model for the fragility of the melts. J Therm Anal Calorim. 2002;69:971–8.CrossRefGoogle Scholar
  24. 24.
    Ikeda M, Aniya M. Correlation between fragility and cooperativity in bulk metallic glass-forming liquids. Intermetallics. 2010;18:1796–9.CrossRefGoogle Scholar
  25. 25.
    Ikeda M, Aniya M. Understanding the Vogel–Fulcher–Tammann law in terms of the bond strength–coordination number fluctuation model. J Non Cryst Solids. 2013;371–372:53–7.CrossRefGoogle Scholar
  26. 26.
    Lunkenheimer P, Kastner S, Köhler M, Loidl A. Temperature development of glassy α-relaxation dynamics determined by broadband dielectric spectroscopy. Phys Rev E. 2010;81:051504.CrossRefGoogle Scholar
  27. 27.
    Jaiswal A, O’Keeffe S, Mills R, Podlesynak A, Ehlers G, Dmowski W, Lokshin K, Stevick J, Egami T, Zhang Y. Onset of cooperative dynamics in an equilibrium glass-forming metallic liquid. J Phys Chem B. 2016;120:1142–8.CrossRefGoogle Scholar
  28. 28.
    Adichtchev SV, Surovtsev NV. Raman line shape analysis as a mean characterizing molecular glass-forming liquids. J Non Cryst Solids. 2011;357:3058–63.CrossRefGoogle Scholar
  29. 29.
    Aniya M, Ikeda M. Sahara. A comparative study of molecular motion cooperativity in polymeric and metallic glass-forming liquids. Mater Sci Forum. 2017;879:151–6.CrossRefGoogle Scholar
  30. 30.
    Huth H, Beiner M, Donth E. Temperature dependence of glass-transition cooperativity from heat-capacity spectroscopy: two post-Adam-Gibbs variants. Phys Rev B. 2000;61:15092–101.CrossRefGoogle Scholar
  31. 31.
    Rijal B, Delbreilh L, Saiter J-M, Schönhals A, Saiter A. Quasi-isothermal and heat–cool protocols from MT-DSC. J Therm Anal Calorim. 2015;121:381–8.CrossRefGoogle Scholar
  32. 32.
    Henricks J, Boyum M, Zheng W. Crystallization kinetics and structure evolution of a polylactic acid during melt and cold crystallization. J Therm Anal Calorim. 2015;120:1765–74.CrossRefGoogle Scholar
  33. 33.
    Pawlus S, Kunal K, Hong L, Sokolov AP. Influence of molecular weight on dynamic crossover temperature in linear polymers. Polymer. 2008;49:2918–23.CrossRefGoogle Scholar
  34. 34.
    Pawlus S, Mierzwa M, Paluch M, Rzoska SJ, Roland CM. Dielectric and mechanical relaxation in isooctylcyanobiphenyl (8*OCB). J Phys Condens Matter. 2010;22:235101.CrossRefGoogle Scholar
  35. 35.
    Rijal B, Delbreilh L, Saiter A. Dynamic heterogeneity and cooperative length scale at dynamic glass transition in glass forming liquids. Macromolecules. 2015;48:8219–31.CrossRefGoogle Scholar
  36. 36.
    Gotze W, Sjogren L. Relaxation processes in supercooled liquids. Rep Prog Phys. 1992;55:241–376.CrossRefGoogle Scholar
  37. 37.
    Schönhals A. Evidence for a universal crossover behaviour of the dynamic glass transition. Europhys Lett. 2001;56:815–21.CrossRefGoogle Scholar
  38. 38.
    Ndeugueu JL, Ikeda M, Aniya M. A comparison between the bond-strength–coordination number fluctuation model and the random walk model of viscosity. J Therm Anal Calorim. 2010;99:33–8.CrossRefGoogle Scholar
  39. 39.
    Saiter A, Bureau E, Zapolsky H, Saiter JM. Cooperativity range and fragility in vitreous polymers. J Non Cryst Solids. 2004;345–346:556–61.CrossRefGoogle Scholar
  40. 40.
    Arkhipov VI, Bässler H. Random-walk approach to dynamic and thermodynamic properties of supercoled melts. 1. Viscosity and average relaxation times in strong and fragile liquids. J Phys Chem. 1994;98:662–9.CrossRefGoogle Scholar
  41. 41.
    Ngai KL. Dynamic and thermodynamic properties of glass-forming substances. J Non Cryst Solids. 2000;275:7–51.CrossRefGoogle Scholar
  42. 42.
    Mirigian S, Schweizer KS. Elastically cooperative activated barrier hopping theory of relaxation in viscous fluids. II. Thermal liquids. J Chem Phys. 2014;140:194507.CrossRefGoogle Scholar
  43. 43.
    Kivelson D, Tarjus G, Zhao X, Kivelson SA. Fitting of viscosity: distinguishing the temperature dependences predicted by various models of supercooled liquids. Phys Rev E. 1996;53:751–8.CrossRefGoogle Scholar
  44. 44.
    Popova VA, Surovtsev NV. The limitation for popular descriptions of α-relaxation temperature dependence. arXiv:1104.2693v1 [cond-mat.mtrl-sci] http://arxiv.org/abs/1104.2693.
  45. 45.
    Kauzmann W. The nature of the glassy state and the behavior of liquids at low temperatures. Chem Rev. 1948;43:219–56.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of General Education, National Institute of TechnologyOita CollegeOitaJapan
  2. 2.Department of Physics, Faculty of Advanced Science and TechnologyKumamoto UniversityKumamotoJapan

Personalised recommendations