Journal of Thermal Analysis and Calorimetry

, Volume 133, Issue 1, pp 107–114 | Cite as

Structure, microstructure and physicochemical properties of BaW1−xNbxO4−δ materials



Nb-doped BaWO4 with the assumed formula BaW1−xNbxO4−δ (x = 0, 0.005, 0.01, 0.02 and 0.05) were prepared by solid-state reaction method. Crystal structure and phase composition were determined by X-ray diffraction method. Scanning electron microscopy (SEM) coupled with energy-dispersive spectrometry (EDS) was used to describe microstructure and chemical composition of synthesised materials. It was found that solubility limit of niobium in the BaWO4 structure is the range 0.5–1 mol%, as formation of second phase—Ba5Nb4O15—was observed for samples with higher dopant content. For evaluation of the chemical stability of synthesized materials, the comparative CO2/H2O exposure test was performed. Samples were exposed to carbon dioxide- and water vapour-rich atmosphere (7% CO2 in air, 100% RH) at 298 K for 700 h. During this exposition, the chemical reactions between the samples and the surrounding gaseous atmosphere resulting in formation of barium hydroxide and/or barium carbonate can process. Thermogravimetry (TG) method was used for chemical stability evaluation. The comparison of samples before and after the CO2/H2O exposure test was performed. To support the interpretation of TG results, the analysis of gaseous products evolved during thermal treatment of the samples was done using mass spectrometer. The effect of dopant on the BaWO4 chemical stability improvement was observed. In order to determine the electrical properties of obtained materials, the DC resistance measurements in synthetic air atmosphere were taken. It was shown that niobium doping and the presence of second phase—Ba5Nb4O15—leads to an increase in the total conductivity of synthesised materials.


Scheelite structure Barium tungstate Niobium-doped BaWO4 Chemical stability 



This work was financially supported by the Ministry of Science and Higher Education, Republic of Poland [Grant No.].


  1. 1.
    Sun L, Cao M, Wang Y, Sun G, Hu C. The synthesis and photoluminescent properties of calcium tungstate nanocrystals. J Cryst Growth. 2006;289:231–5.CrossRefGoogle Scholar
  2. 2.
    Cavalcante LS, Longo VM, Sczancoski JC, Almeida MAP, Batista AA, Varela JA, Orlandi MO, Longo E, Li S. Electronic structure, growth mechanism and photoluminescence of CaWO4 crystals. CrystEngComm. 2012;14:853–68.CrossRefGoogle Scholar
  3. 3.
    Abreu MFC, Motta FV, Lima RC, Li MS, Longo E, Marques APDA. Effect of process parameters on photophysical properties and barium molybdate phosphors characteristics. Ceram Int. 2014;40:6719–29.CrossRefGoogle Scholar
  4. 4.
    Brazdil JF. Scheelite: a versatile structural template for selective alkene oxidation catalysts. Catal Sci Technol. 2015;5:3452–8.CrossRefGoogle Scholar
  5. 5.
    Chen W, Inagawa Y, Omatsu T, Tateda M, Takeuchi N, Usuki Y. Diode-pumped, self-stimulating, passively Q-switched Nd3+: PbWO4 Raman laser. Opt Commun. 2001;194:401–7.CrossRefGoogle Scholar
  6. 6.
    Takai S, Sugiura K, Esaka T. Ionic conduction properties of Pb1-xMxWO4 + δ (M = Pr, Tb). Mater Res Bull. 1999;34:193–202.CrossRefGoogle Scholar
  7. 7.
    Krzmanc MM, Logar M, Budic B, Suvorov D. Dielectric and microstructure study of the SrWO4, BaWO4 and CaWO4 scheelite ceramics. J Am Ceram Soc. 2011;94:2464–72.CrossRefGoogle Scholar
  8. 8.
    Jena P, Nallamuthu N, Hari Prasad K, Venkateswarlu M, Satyanarayana N. Structural characterization and electrical conductivity studies of BaMoO4 nanofibers prepared by sol–gel and electrospinning techniques. J Sol–Gel Sci Technol. 2014;72:480–9.CrossRefGoogle Scholar
  9. 9.
    Cavalcante LS, Sczancoski JC, Lima LF Jr, Espinosa JWM, Pizani PS, Varela JA, Longo E. Synthesis, characterization, anisotropic growth and photoluminescence of BaWO4. Crys Growth Des. 2009;9:1002–12.CrossRefGoogle Scholar
  10. 10.
    Tian G, Sheng N, Qiu X. Structure and photoluminescence properties of SrWO4 3D microspheres synthesized by the surfactant-assisted hydrothermal method. Cryst Res Technol. 2014;49:360–5.CrossRefGoogle Scholar
  11. 11.
    Sczancoski JC, Bomio MDR, Cavalcante LS, Joya MR, Pizani PS, Varela JA, Longo E, Siu Li M, Andrés JA. Morphology and blue photoluminescence emission of PbMoO4 processed in conventional hydrothermal. J Phys Chem. 2009;113:5812–22.Google Scholar
  12. 12.
    Thongtem T, Phuruangrat A, Thongtem S. Microwave-assisted synthesis and characterization of SrMoO4 and SrWO4 nanocrystals. J Nanopart Res. 2010;12:2287–94.CrossRefGoogle Scholar
  13. 13.
    Thongtem T, Phuruangrat A, Thongtem S. Preparation and characterization of nanocrystalline SrWO4 using cyclic microwave radiation. Curr Appl Phys. 2008;8:189–97.CrossRefGoogle Scholar
  14. 14.
    Thongtem T, Phuruangrat A, Thongtem S. Characterization of MeWO4 (Me = Ba, Sr and Ca) nanocrystallines prepared by sonochemical method. Appl Surf Sci. 2008;254:7581–5.CrossRefGoogle Scholar
  15. 15.
    Porto SL, Longo E, Pizani PS, Boschi TM, Simoes LGP, Lima SJG, Ferreira JM, Soledad LEB, Espinoza JWM, Cassia-Santos MR, Maurera MAMA, Paskocimas CA, Santos IMG, Souza AG. Photoluminescence in the CaxSr1-xWO4 system at room temperature. J Solid State Chem. 2008;181:1876–81.CrossRefGoogle Scholar
  16. 16.
    Hallaoui A, Taoufyq A, Arab M, Bakiz B, Benlhachemi A, Bazzi L, Villain S, Valmalette J-C, Guinneton F, Gavarri J-R. Influence of chemical substitution on the photoluminescence of Sr(1-x)PbxWO4 solid solution. J Solid State Chem. 2015;227:186–95.CrossRefGoogle Scholar
  17. 17.
    Rendón-Angeles JC, Matamoros-Veloza Z, Gonzalez LA, López-Cuevas J, Ueda T, Yanagisawa K, Hernández-Calderón I, Garcia-Rocha M. Rapid hydrothermal synthesis of SrMo1-xWxO4 powders: structure and luminescence characterization. Adv Powder Technol. 2017;28:629–40.CrossRefGoogle Scholar
  18. 18.
    Sun XY, Sun XD, Li XG, He J, Wang BS. Synthesis and luminescence of BaWO4:Ln3+ (Ln = Eu, Tb, and Dy) powders. J Electron Mater. 2014;43:3534–8.CrossRefGoogle Scholar
  19. 19.
    Priya A, Sinha E, Rout SK. Structural, optical and microwave dielectric properties of Ba1-xSrxWO4 ceramics prepared by solid state reaction route. Solid State Sci. 2013;20:40–5.CrossRefGoogle Scholar
  20. 20.
    Culver SP, Greaney MJ, Tinoco A, Brutchey RL. Low-temperature synthesis of homogeneous solid solutions of scheelite-structured Ca1−xSrxWO4 and Sr1−xBaxWO4 nanocrystals. Dalton Trans. 2015;44:15042–8.CrossRefGoogle Scholar
  21. 21.
    Piatkowska M, Tomaszewicz E. Synthesis, structure, and thermal stability of new scheelite-type Pb1-3xxPr2x(MoO4)1-3x(WO4)3x ceramic materials. J Therm Anal Calorim. 2016;126:111–9.CrossRefGoogle Scholar
  22. 22.
    Łącz A, Pasierb P. Synthesis and properties of BaCe1-xYxO3-δ–BaWO4 composite protonic conductors. J Therm Anal Calorim. 2013;113:405–12.CrossRefGoogle Scholar
  23. 23.
    Norby T. Solid-state protonic conductors: principles, properties, progress and prospects. Solid State Ion. 1999;125:1–11.CrossRefGoogle Scholar
  24. 24.
    Thangadurai V, Knittlmayer C, Weppner W. Metathetic room temperature preparation and characterization of scheelite-type ABO4 (A = Ca, Sr, Ba, Pb; B = Mo, W) powders. Mater Sci Eng B-Adv. 2004;106:228–33.CrossRefGoogle Scholar
  25. 25.
    Esaka T. Ionic conduction in substituted scheelite-type oxides. Solid State Ion. 2000;136–137:1–9.CrossRefGoogle Scholar
  26. 26.
    Esaka T, Tachibana R, Takai S. Oxide ion conduction in the Sm-substituted PbWO4 phases. Solid State Ion. 1996;92:129–33.CrossRefGoogle Scholar
  27. 27.
    Takai S, Morishita J, Kondo Y, Yao T, Yabutsuka T, Esaka T. Electrochemical properties of Cs-substituted CaWO4 and BaWO4 oxide ion conductors. J Ceram Soc Jpn. 2016;124:819–22.CrossRefGoogle Scholar
  28. 28.
    Cheng J, Tian C, Zhao D. Synthesis and electrochemical properties of Ca0.9La0.1WO4 + δ Electrolyte for Solid Oxide Fuel Cells. J Solid State Electrochem. 2011;16:753–8.CrossRefGoogle Scholar
  29. 29.
    Vigen CK, Haugsrud R. Proton Conductivity in Solid Solution 0.7(CaWO4)–0.3(La0.99Ca0.01NbO4) and Ca(1-x)LaxW(1-y)TayO4. J Am Ceram Soc. 2013;96:3812–20.CrossRefGoogle Scholar
  30. 30.
    Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 1976;32:751–67.CrossRefGoogle Scholar
  31. 31.
    Ge WW, Zhang HJ, Wang JY, Liu JH, Xu XG, Hu XB, Jiang MH, Ran DG, Sun SQ, Xia HR, Boughton RI. Thermal and mechanical properties of BaWO4 crystal. J Appl Phys. 2005;98:013542-1–6.CrossRefGoogle Scholar
  32. 32.
    Russ JC, Dehoff RT. Practical stereology. 2nd ed. Berlin: Springer; 2000.CrossRefGoogle Scholar
  33. 33.
    Galwey AK, Brown ME. Thermal decomposition of ionic solids. Amsterdam: Elsevier; 1999.Google Scholar
  34. 34.
    Zhao H, Feng S, Xu W, Shi Y, Mao Y, Zhu X. A rapid chemical route to niobates: hydrothermal synthesis and transport properties of ultrafine Ba5Nb4O15. J Mater Chem. 2000;10:965–8.CrossRefGoogle Scholar
  35. 35.
    Ling CD, Avdeev M, Kutteh R, Kharton VV, Yaremchenko AA, Fialkova S, Sharma N, Macquart RB, Hoelzel M, Gutmann M. Structures, phase transitions, hydration, and ionic conductivity of Ba4Nb2O9. Chem Mater. 2009;21:3853–64.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Faculty of Materials Science and CeramicsAGH University of Science and TechnologyKrakowPoland

Personalised recommendations