High-temperature oxidation behaviour of low-entropy alloy to medium- and high-entropy alloys

  • Nana Kwabena Adomako
  • Jeoung Han Kim
  • Yong Taek Hyun
Article
  • 114 Downloads

Abstract

The high-temperature oxidation behaviour of CoCrNi, CoCrNiMn, and CoCrNiMnFe equimolar alloys was investigated. All three alloys have a single-phase face-centred cubic structure. Thermogravimetric analyses (TGA) were conducted at temperatures ranging from 800 to 1000 °C for 24 h in dry air. The kinetic curves of the oxidation were measured by TGA, and the microstructure and chemical element distribution in different regions of the specimens were analysed. The oxidation kinetics of the three alloys followed the two-stage parabolic rate law, with rate constants generally increasing with increasing temperature. CoCrNi displayed the highest resistance to oxidation, followed by CoCrNiMnFe and CoCrNiMn exhibiting the least resistance to oxidation. The addition of Mn to CoCrNi increased the oxidation rate. The oxidation resistance of CoCrNiMn was enhanced by the addition of Fe. Less Mn Content and the formation of more Cr2O3 were responsible for the reduction in the oxidation rates of CoCrNiMnFe. The calculated activation energies of CoCrNiMn and CoCrNiMnFe at 800, 850 and 900 °C were 108 and 137 kJ mol−1, respectively, and are comparable to that of Mn diffusion in Mn oxides. The diffusion of Mn through the oxides at 800–900 °C is considered to be the rate-limiting process. The intense diffusion of Cr at 1000 °C contributed to the formation of CrMn1.5O4 spinel with Mn in the outer layer of CoCrNiMn and Cr2O3 in the outer layer of CoCrNiMn.

Keywords

High-entropy alloys Oxidation Thermogravimetric analyses Diffusion 

Notes

Funding

This research was also supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2015R1C1A1A02036622).

References

  1. 1.
    Kai W, Jang WL, Huang RT, Lee CC, Hsieh HH, Du CF. Air oxidation of FeCoNi-base equi-molar alloys at 800–1000°C. Oxid Met. 2005;63:169–92.CrossRefGoogle Scholar
  2. 2.
    Chou YL, Wang YC, Yeh JW, Shih HC. Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride-containing sulphate solutions. Corros Sci. 2010;52:3481–91.CrossRefGoogle Scholar
  3. 3.
    Hemphill MA, Yuan T, Wang GY, Yeh JW, Tsai CW, Chuang A. Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater. 2012;60:5723–34.CrossRefGoogle Scholar
  4. 4.
    Wang F, Zhang Y, Chen G, Davies HA. Tensile and compressive mechanical behavior of a CoCrCuFeNiAl0.5 high entropy alloy. Int J Mod Phys B. 2009;23:1254–9.CrossRefGoogle Scholar
  5. 5.
    Cantor B, Chang ITH, Knight P, Vincent AJB. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375–377:213–8.CrossRefGoogle Scholar
  6. 6.
    Gludovatz B, Hohenwarter A, Catoor D, Chang EH, George EP, Ritchie RO. A fracture-resistant high-entropy alloy for cryogenic applications. Science. 2014;345:1153–8.CrossRefGoogle Scholar
  7. 7.
    Tsai KY, Tsai MH, Yeh JW. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 2013;61:4887–97.CrossRefGoogle Scholar
  8. 8.
    Dąbrowa J, Cieslak G, Stygar M, Mroczka K, Berent K, Kulik T, Danielewski M. Influence of Cu content on high temperature oxidation behavior of AlCoCrCuxFeNi high entropy alloys (x = 0; 0.5; 1). Intermetallics. 2017;84:52–61.CrossRefGoogle Scholar
  9. 9.
    Huang BP, Yeh J. Multi principal element alloys with improved oxidation and wear resistance for thermal spray coating. Adv Eng Mater. 2004;6:74–8.CrossRefGoogle Scholar
  10. 10.
    Wu Z, Bei H, Otto F, Pharr GM, George EP. Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics. 2014;46:131–40.CrossRefGoogle Scholar
  11. 11.
    Wu Z, Bei H, Pharr GM, George EP. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 2014;81:428–41.CrossRefGoogle Scholar
  12. 12.
    Zhao YL, Yang T, Tong Y, Wang J, Luan JH, Jiao ZB, Chen D, Yang Y, Hu A, Liu CT, Kai JJ. Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy. Acta Mater. 2017;138:72–82.CrossRefGoogle Scholar
  13. 13.
    Sugimoto K, Seto M, Tanaka S. Corrosion resistance of artificial passivation films of Fe2O3–Cr2O3–NiO formed by metalorganic chemical vapor deposition. J Electrochem Soc. 1993;140:1586–92.CrossRefGoogle Scholar
  14. 14.
    Butler TM, Weaver ML. Oxidation behavior of arc melted AlCoCrFeNi multi-component high-entropy alloys. J Alloys Compd. 2016;674:229–44.CrossRefGoogle Scholar
  15. 15.
    Speidel DH, Muan A. The system manganese oxide-Cr2O3 in air. J Am Ceram Soc. 1963;46:577–8.CrossRefGoogle Scholar
  16. 16.
    Sabioni ACS, Huntz AM, Philibert J, Lesage B, Monty C. Relation between the oxidation growth rate of chromia scales and self-diffusion in Cr2O3. J Mater Sci. 1992;27:4782–90.CrossRefGoogle Scholar
  17. 17.
    Smeltzer WW, Young DJ. Oxidation properties of transition metals. Prog Solid State Chem. 1975;10:17–54.CrossRefGoogle Scholar
  18. 18.
    Zaddach AJ, Niu C, Koch CC, Irving DL. Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy. JOM. 2013;65:1780–9.CrossRefGoogle Scholar
  19. 19.
    Joo SH, Kato H, Jang MJ, Moon J, Tsai CW, Yeh JW, Kim HS. Tensile deformation behavior and deformation twinning of an equimolar CoCrFeMnNi high-entropy alloy. Mater Sci Eng A. 2017;689:122–33.CrossRefGoogle Scholar
  20. 20.
    Barin I, Platzki G. Thermochemical data of pure substances. 3rd ed. New York: VCH; 1995.CrossRefGoogle Scholar
  21. 21.
    Dean JA, Lange NA. Lange’s handbook of chemistry. 15th ed. New York: McGraw-Hill; 1999.Google Scholar
  22. 22.
    Xu X, Zhang X, Sun X, Lu ZP. Roles of manganese in the high-temperature oxidation resistance of alumina-forming austenitic steels at above 800 °C. Oxid Met. 2012;78:349–62.CrossRefGoogle Scholar
  23. 23.
    Holcomb GR, Tylczak J, Carney C. Oxidation of CoCrFeMnNi high entropy alloys. JOM J Miner Met Mater Soc. 2015;67:2326–39.CrossRefGoogle Scholar
  24. 24.
    Laplanche G, Volkert UF, Eggeler G, George EP. Oxidation behavior of the CrMnFeCoNi high-entropy alloy. Oxid Met. 2016;85:629–45.CrossRefGoogle Scholar
  25. 25.
    Païdassi J, Echeverría A. The oxidation of manganese in air at elevated temperatures. Acta Metall. 1959;7:293–5.CrossRefGoogle Scholar
  26. 26.
    Peterson PL, Chen WK. Cation self-diffusion and the isotope effect in Mn. J Phys Chem Solids. 1982;43:29–38.CrossRefGoogle Scholar
  27. 27.
    Butler TM, Alfano JP, Martens RL, Weaver ML. High-temperature oxidation behavior of Al–Co–Cr–Ni–(Fe or Si) multicomponent high-entropy alloys. JOM. 2015;67:246–59.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Nana Kwabena Adomako
    • 1
  • Jeoung Han Kim
    • 1
  • Yong Taek Hyun
    • 2
  1. 1.Department of Materials Science and EngineeringHanbat National UniversityYuseong-gu, DaejeonRepublic of Korea
  2. 2.Titanium DepartmentKorea Institute of Materials ScienceGyeongnamRepublic of Korea

Personalised recommendations