Effect of torrefaction on thermal behavior and fuel properties of Eucalyptus grandis macro-particulates

Abstract

Considered as a carbon-neutral fuel from a climate change perspective and the most common renewable resource, biomass needs an energetic conversion process to replace more conventional energy sources. Torrefaction is a thermal modification process used to improve biomass as solid fuel. In this study, macro-particles of Eucalyptus grandis were investigated under an oxidizing atmosphere (10% O2). The aim was to evaluate the effect of the temperature (230, 250, 270 and 290 °C) and heating rates (3, 5 and 7 °C min−1) on 3 × 3 × 3 cm samples by the assessment of the dynamic solid yield and its derivative curve, proximate analysis as well as energy content. The solid yield decreases with increasing temperature showing a linear relationship (R2 = 0.97) for light and mild torrefaction and more aggressive behavior for severe torrefaction (280 and 290 °C) with degradation varying from 6.7 to 34.8% and a higher heating value enhancement varying from 3.4% (230 °C) to 24.3% (290 °C). The approach followed allows a characterization of biomass samples, thermal behaviors dynamics as well as the torrefied final product showing the impact of temperature, heating rate and residence time.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    EPE. Brazilian Energy Balance 2016, Year 2015, Empres. Pesqui. Energética – EPE, p. 292 (2016). https://ben.epe.gov.br/downloads/Relatorio_Final_BEN_2016.pdf. Accessed 8 June 2017.

  2. 2.

    Chen W-H, Peng J, Bi XT. A state-of-the-art review of biomass torrefaction, densification and applications. Renew Sustain Energy Rev. 2015;44:847–66. https://doi.org/10.1016/j.rser.2014.12.039.

    CAS  Article  Google Scholar 

  3. 3.

    Chen WH, Lu KM, Tsai CM. An experimental analysis on property and structure variations of agricultural wastes undergoing torrefaction. Appl Energy. 2012;100:318–25. https://doi.org/10.1016/j.apenergy.2012.05.056.

    CAS  Article  Google Scholar 

  4. 4.

    van der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ. Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenergy. 2011;35:3748–62. https://doi.org/10.1016/j.biombioe.2011.06.023.

    CAS  Article  Google Scholar 

  5. 5.

    Tumuluru JS, Sokhansanj S, Hess JR, Wright CT, Boardman RD. A review on biomass torrefaction process and product properties for energy applications. Ind Biotechnol. 2011;7:384–401. https://doi.org/10.1089/ind.2011.0014.

    Article  Google Scholar 

  6. 6.

    Almeida G, Brito JO, Perré P. Alterations in energy properties of eucalyptus wood and bark subjected to torrefaction: the potential of mass loss as a synthetic indicator. Bioresour Technol. 2010;101:9778–84. https://doi.org/10.1016/j.biortech.2010.07.026.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Arias B, Pevida C, Fermoso J, Plaza MG, Rubiera F, Pis JJ. Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Process Technol. 2008;89:169–75. https://doi.org/10.1016/j.fuproc.2007.09.002.

    CAS  Article  Google Scholar 

  8. 8.

    Bergman PCA, Kiel JHA. Torrefaction for biomass upgrading. In: Proceedings of 14th European biomass conference, Paris, France, p. 17–21 (2005).

  9. 9.

    Mei Y, Liu R, Yang Q, Yang H, Shao J, Draper C, Zhang S, Chen H. Torrefaction of cedarwood in a pilot scale rotary kiln and the influence of industrial flue gas. Bioresour Technol. 2015;177:355–60. https://doi.org/10.1016/j.biortech.2014.10.113.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Wang C, Peng J, Li H, Bi XT, Legros R, Lim CJ, Sokhansanj S. Oxidative torrefaction of biomass residues and densification of torrefied sawdust to pellets. Bioresour Technol. 2013;127:318–25. https://doi.org/10.1016/j.biortech.2012.09.092.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Rousset P, Macedo L, Commandré JM, Moreira A. Biomass torrefaction under different oxygen concentrations and its effect on the composition of the solid by-product. J Anal Appl Pyrolysis. 2012;96:86–91. https://doi.org/10.1016/j.jaap.2012.03.009.

    CAS  Article  Google Scholar 

  12. 12.

    Arias B, Pevida C, Fermoso J, Plaza MG, Rubiera F, Pis JJ. Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Process Technol. 2008;89:169–75. https://doi.org/10.1016/j.fuproc.2007.09.002.

    CAS  Article  Google Scholar 

  13. 13.

    Lu KM, Lee WJ, Chen WH, Liu SH, Lin TC. Torrefaction and low temperature carbonization of oil palm fiber and eucalyptus in nitrogen and air atmospheres. Bioresour Technol. 2012;123:98–105. https://doi.org/10.1016/j.biortech.2012.07.096.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Rodrigues TO, Rousset PLA. Effects of torrefction on energy properties of Eucalyptus grandis wood. Cerne. 2009;15:446–52. https://doi.org/10.1017/CBO9781107415324.004.

    Article  Google Scholar 

  15. 15.

    Arteaga-Pérez LE, Segura C, Espinoza D, Radovic LR, Jiménez R. Torrefaction of Pinus radiata and Eucalyptus globulus: a combined experimental and modeling approach to process synthesis. Energy Sustain Dev. 2015;29:13–23. https://doi.org/10.1016/j.esd.2015.08.004.

    CAS  Article  Google Scholar 

  16. 16.

    Arteaga-Pérez LE, Segura C, Bustamante-García V, Cápiro OG, Jiménez R. Torrefaction of wood and bark from Eucalyptus globulus and Eucalyptus nitens: focus on volatile evolution vs feasible temperatures. Energy. 2015;93:1731–41. https://doi.org/10.1016/j.energy.2015.10.007.

    CAS  Article  Google Scholar 

  17. 17.

    Pétrissans A, Younsi R, Chaouch M, Gérardin P, Pétrissans M. Experimental and numerical analysis of wood thermodegradation Mass loss kinetics. J Therm Anal Calorim. 2012;109:907–14. https://doi.org/10.1007/s10973-011-1805-1.

    CAS  Article  Google Scholar 

  18. 18.

    Peduzzi E, Boissonnet G, Haarlemmer G, Dupont C, Maréchal F. Torrefaction modelling for lignocellulosic biomass conversion processes. Energy. 2014;70:58–67. https://doi.org/10.1016/j.energy.2014.03.086.

    CAS  Article  Google Scholar 

  19. 19.

    Bach QV, Chen WH, Chu YS, Skreiberg Ø. Predictions of biochar yield and elemental composition during torrefaction of forest residues. Bioresour Technol. 2016;215:239–46. https://doi.org/10.1016/j.biortech.2016.04.009.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Bates RB, Ghoniem AF. Biomass torrefaction: modeling of reaction thermochemistry. Bioresour Technol. 2013;134:331–40. https://doi.org/10.1016/j.biortech.2013.01.158.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Bates RB, Ghoniem AF. Modeling kinetics-transport interactions during biomass torrefaction: the effects of temperature, particle size, and moisture content. Fuel. 2014;137:216–29. https://doi.org/10.1016/j.fuel.2014.07.047.

    CAS  Article  Google Scholar 

  22. 22.

    Peduzzi E, Boissonnet G, Haarlemmer G, Dupont C, Maréchal F. Torrefaction modelling for lignocellulosic biomass conversion processes. Energy. 2014;70:58–67. https://doi.org/10.1016/j.energy.2014.03.086.

    CAS  Article  Google Scholar 

  23. 23.

    Bates RB, Ghoniem AF. Biomass torrefaction: modeling of volatile and solid product evolution kinetics. Bioresour Technol. 2012;124:460–9. https://doi.org/10.1016/j.biortech.2012.07.018.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Abraf. Anuário Estatístico-Associação Brasileira de Produtores de Florestas Plantadas, Anuário Estatístico ABRAF, p. 146 (2013). http://www.ipef.br/estatisticas/relatorios/anuario-abraf13-br.pdf. Accessed 22 Oct 2016.

  25. 25.

    Balme Q, Lemont F, Rousset F, Sedan J, Charvin P, Bondroit J, Marias F. Design, calibration and testing of a new macro-thermogravimetric analyzer. J Therm Anal Calorim. 2018;132:13–5. https://doi.org/10.1007/s10973-018-7118-x.

    CAS  Article  Google Scholar 

  26. 26.

    Oliveira T. Efeitos da torrefação no condicionamento de biomassa para fins energéticos. Brasília: Univ. Brasília; 2009. p. 71.

    Google Scholar 

  27. 27.

    Galvão LGO. Efeitos da acústica e da temperatura no processo de torrefação e nas propriedades energéticas da madeira de Eucalypitus grandis. Brasília: University of Brasília; 2018. http://repositorio.unb.br/handle/10482/32315. Accessed 6 May 2018.

  28. 28.

    Candelier K, Thevenon MF, Petrissans A, Dumarcay S, Gerardin P, Petrissans M. Control of wood thermal treatment and its effects on decay resistance: a review. Ann For Sci. 2016;73:571–83. https://doi.org/10.1007/s13595-016-0541-x.

    Article  Google Scholar 

  29. 29.

    Esteves BM, Pereira HM. Wood modification by heat treatment: a review. BioResources. 2009;4:370–404.

    CAS  Google Scholar 

  30. 30.

    Zhao Z, Ma Q, Mu J, Yi S, He Z. Numerical analysis of Eucalyptus grandis x E. urophylla heat-treatment: a dynamically detecting method of mass loss during the process. Results Phys. 2017;7:5–15. https://doi.org/10.1016/j.rinp.2016.11.059.

    Article  Google Scholar 

  31. 31.

    Chaouch M. Effet de l’intensité du traitement sur la composition élémentaire et la durabilité du bois traité thermiquement : développement d’un marqueur de prédiction de la résistance aux champignons basidiomycètes Soutenue. Nancy: Université Henri Poincaré Spécialité; 2011.

    Google Scholar 

  32. 32.

    Silveira EA, Lin BJ, Colin B, Chaouch M, Pétrissans A, Rousset P, Chen WH, Pétrissans M. Heat treatment kinetics using three-stage approach for sustainable wood material production. Ind Crops Prod. 2018;124:563–71. https://doi.org/10.1016/j.indcrop.2018.07.045.

    CAS  Article  Google Scholar 

  33. 33.

    Silveira EA, de Morais MVG, Rousset P, Caldeira-Pires A, Pétrissans A, Galvão LGO. Coupling of an acoustic emissions system to a laboratory torrefaction reactor. J Anal Appl Pyrolysis. 2017;129:29–36. https://doi.org/10.1016/j.jaap.2017.12.008.

    CAS  Article  Google Scholar 

  34. 34.

    Park SW, Jang CH, Baek KR, Yang JK. Torrefaction and low-temperature carbonization of woody biomass: evaluation of fuel characteristics of the products. Energy. 2012;45:676–85. https://doi.org/10.1016/j.energy.2012.07.024.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The research presented was supported by Brazilian National Council for Scientific and Technological Development (CNPq), Brazilian Foundation for the Coordination and Improvement of Higher Level or Education Personnel (Capes) and Brazilian Forest Products Laboratory.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Edgar A. Silveira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Silveira, E.A., Galvão, L.G.O., Sá, I.A. et al. Effect of torrefaction on thermal behavior and fuel properties of Eucalyptus grandis macro-particulates. J Therm Anal Calorim 138, 3645–3652 (2019). https://doi.org/10.1007/s10973-018-07999-4

Download citation

Keywords

  • Torrefaction
  • Eucalyptus grandis
  • Oxidizing atmosphere
  • TG
  • Solid yield
  • Energy yield