Skip to main content
Log in

Experimental thermodynamic analysis of a forced convection solar air heater using absorber plate with pin-fins

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This research paper deals with the experimental thermodynamic analysis of a forced convection solar air heater using pin-fin absorber plate and compared with the standard flat absorber plate. The experiments were carried out during the months of February 2018 and March 2018 at Coimbatore city in India. The performance parameters such as, outlet air temperature, energy efficiency, thermohydraulic efficiency, and exergy efficiency are used for performance comparisons. The results showed that the pin-fin absorber plate has about 17 °C higher outlet air temperature when compared to the flat absorber plate. The energy efficiency of a forced convection solar air heater using pin-fin absorber plate was found to be 3% to 12% higher when compared to flat absorber plate with 2% to 11% higher exergy efficiency. The results confirmed that forced convection solar air heaters using pin-fin absorber plate is having significant performance improvement in thermodynamic performance with minimum pressure drop across the air heater duct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A :

Area (m2)

c p :

Specific heat (J kg−1 K−1)

D h :

Diameter mean diameter (m)

\(\dot{E}x_{\text{des}}\) :

Exergy (W)

f :

Friction coefficient

h c :

Convection heat transfer coefficient (W m−2 K−1)

h r :

Radiation heat transfer coefficient (W m−2 K−1)

h fg :

Latent heat of paraffin wax (J kg−1 K−1)

h :

Specific enthalpy (J kg−1)

I :

Intensity of radiation (W m−2)

k :

Thermal conductivity (W m−1 K−1)

K :

Head loss factor

L 1 :

Length of the solar air heater (m)

L 2 :

Width of the solar air heater (m)

L 3 :

Depth of the solar air heater (m)

\(\dot{m}_{\text{a}}\) :

Mass flow rate of air (kg s−1)

p :

Pressure (bar)

P flow :

Pumping power (W)

P blower :

Blower power (W)

\(\dot{Q}\) :

Amount of heat transfer (W)

\(\dot{Q}_{\text{s}}\) :

Energy incident on the solar air heater (W)

R :

Gas constant (J kg−1 K−1)

Re :

Reynolds number (–)

s :

Specific entropy (J kg−1 K−1)

t :

Time (s)

T :

Temperature (K)

U :

Over all heat transfer coefficient (W m−2 K−1)

v :

Velocity (m s−1)

x :

Thickness (m)

0:

Dead state

a:

Air

ab:

Absorbed

amb:

Ambient

ava:

Available

b:

Bottom

ch:

Charging

des:

Destruction

e:

Edge

f:

Fluid

g:

Glass

h:

Hydraulic

i:

Insulation

loss:

Heat loss

m:

Mean

p:

Plate

r, p-g:

Radiation heat exchange between plate and glass

r, g-a:

Radiation heat exchange between glass and air

s:

Stored

t:

Top

th-hy:

Thermohydraulic

u:

Utilised

w:

Wind

\(\psi_{\text{i}}\) :

Specific exergy (J kg−1)

τ :

Transmissivity

α :

Absorptivity

ε :

Emissivity

σ :

Stefan Boltzmann constant (5.68 × 10−8 W m−2 K−4)

ρ :

Density (kg m−3)

η :

Efficiency (%)

Δp :

Pressure drop (N m−2)

Δp total :

Total pressure drop (N m−2)

Δp ch :

Pressure drop across the channel (N m−2)

Δp Entry :

Pressure drop at the entry (N m−2)

Δp o :

Pressure drop in the orifice meter (N m−2)

Δh :

Difference in liquid column (m)

References

  1. Kalogirou SA. Solar thermal collectors and applications. Prog Energy Combust Sci. 2004;30:231–95.

    Article  CAS  Google Scholar 

  2. Tyagi VV, Pandey AK, Kaushik SC, Tyagi SK. Thermal performance evaluation of a solar air heater with and without thermal energy storage. J Therm Anal Calorim. 2012;107:1345–52.

    Article  CAS  Google Scholar 

  3. Bhushan B, Singh R. A review on methodology of artificial roughness used in duct of solar air heaters. Energy. 2010;35:202–12.

    Article  Google Scholar 

  4. Alam T, Saini RP, Salini JS. Use of turbulators for heat transfer augmentation in an air duct—a review. Renew Energy. 2014;62:689–715.

    Article  Google Scholar 

  5. Singh OK, Panwar NL. Effects of thermal conductivity and geometry of materials on the temperature variation in packed bed solar air heater. J Therm Anal Calorim. 2013;111:839–47.

    Article  CAS  Google Scholar 

  6. Ramadan MRI, El-Sebaii AA, Aboul-Enein S, El-Bialy E. Thermal performance of a packed bed double-pass solar air heater. Energy. 2007;32:1524–35.

    Article  Google Scholar 

  7. Mohanraj M, Chandrasekar P. Performance of a solar drier with and without heat storage material for copra drying. Int J Global Energy Issues. 2009;32:112–21.

    Article  Google Scholar 

  8. Akpinar EK, KocyIgit F. Energy and exergy analysis of a new flat-plate solar air heater having different obstacles on absorber plates. Appl Energy. 2010;87:3438–50.

    Article  Google Scholar 

  9. Tanda G. Performance of solar air heater ducts with different types of ribs on the absorber plate. Energy. 2011;36:6651–60.

    Article  Google Scholar 

  10. Yeh H-M, Ho C-D, Lin C-Y. Effect of collector aspect ratio on the collector efficiency of upward type baffled solar air heaters. Energy Convers Manag. 2000;41:971–81.

    Article  Google Scholar 

  11. Chamoli S, Thakur NS. Exergetic performance evaluation of solar air heater having V-down perforated baffles on the absorber plate. J Therm Anal Calorim. 2014;117:909–23.

    Article  CAS  Google Scholar 

  12. Ozgen F, Esen M, Esen H. Experimental investigation of thermal performance of a double-flow solar air heater having aluminum cans. Renew Energy. 2009;34:2391–8.

    Article  CAS  Google Scholar 

  13. Nwosu NP. Employing exergy-optimized pin-fins in the design of an absorber in a solar air heater. Energy. 2010;35:571–5.

    Article  CAS  Google Scholar 

  14. Arul Kumar R, Ganesh Babu B, Mohanraj M. Thermodynamic performance of a forced convection solar air heaters using pin-fin absorber plate packed with latent heat storage materials. J Therm Anal Calorim. 2016;126:1657–78.

    Article  CAS  Google Scholar 

  15. Arul Kumar R, Ganesh Babu B, Mohanraj M. Experimental investigations on a forced convection solar air heater using packed bed absorber plates with phase change materials. Int J Green Energy. 2017;14(15):1330753

    Google Scholar 

  16. Tyagi VV, Pandey AK, Giridhar G, Bandhopdhayay B, Park SR, Tyagi SK. Comparative study based on exergy analysis of solar air dryer using temporary thermal energy storage. Int J Energy Res. 2012;36:724–36.

    Article  CAS  Google Scholar 

  17. Shariah A, Al-Akhras MA, Al-Omari IA. Optimizing the tilt angle of solar collectors, Renew. Energy. 2002;26:587–98.

    Google Scholar 

  18. Kalaiarasi G, Velraj R, Muthusamy V. Swami, Experimental energy analysis of a flat plate solar air heater with a new design of integrated sensible heat storage. Energy. 2016;111:609–19.

    Article  CAS  Google Scholar 

  19. Holman JP. Experimental methods for engineers. New Delhi: Tata Mcgraw hill Publishing Company; 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sivakumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivakumar, S., Siva, K. & Mohanraj, M. Experimental thermodynamic analysis of a forced convection solar air heater using absorber plate with pin-fins. J Therm Anal Calorim 136, 39–47 (2019). https://doi.org/10.1007/s10973-018-07998-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-07998-5

Keywords

Navigation