Skip to main content
Log in

Comparative experimental study on parabolic trough collector integrated with thermal energy storage system by using different reflective materials

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present study focuses on the performance analysis of parabolic trough collector (PTC) incorporated with single-tank thermal energy storage (TES) system with the use of two different reflective materials in PTC which includes glass and high-reflective stainless steel sheet. It consists of TES tank which contains 110 L of Therminol-66 oil (heat transfer fluid). The experiments are conducted for the use of glass reflective material PTC and stainless steel reflective material PTC when both are integrated with TES system. The various performance parameters like useful energy gained by the PTC, energy collected in the PTC, PTC efficiency, heat loss coefficient and the stored amount of energy in TES tank are calculated to know the overall efficiency of the system during daytime. It has been concluded that the use of glass as the reflective material in PTC has better useful heat gain and high average PTC efficiency in comparison with stainless steel reflective material. However, the overall system performance is almost equal to both reflective materials. Silver-coated stainless steel reflective material may be preferred in PTC when it is coupled with single TES tank system, due to cost effectiveness and ease availability with a high-reflective power about 98.9%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

\(T_{\text{e}}\) :

Reference or environment temperature (K)

\(A_{\text{s}}\) :

Storage tank surface area (m2)

\(C_{\text{p}}\) :

Specific heat capacity (J kg−1 K−1)

\({\text{Ex}}_{\text{PCM}}\) :

Rate of exergy stored in the PCM tank (W)

\({\text{Ex}}_{\text{i}}\) :

Rate solar exergy input to the PTC (W)

\(Q_{\text{loss}}\) :

Amount of energy used for the charging process of PCM (W)

\(Q_{\text{u}}\) :

Useful heat gain (W)

\(T_{\text{HTF}}\) :

Average temperature of HTF (°C)

\(T_{\text{PCM}}\) :

Average temperature of PCM (°C)

\(T_{\text{S}}\) :

Average oil temperature in the storage tank (°C)

\(T_{\text{a}}\) :

Average ambient temperature (°C)

\(T_{\text{i}}\) :

Oil inlet temperature (°C)

\(T_{\text{m}}\) :

Melting temperature of PCM (K)

\(T_{\text{o}}\) :

Oil outlet temperature (°C)

\(T_{\text{si}}\) :

HTF inlet temperature to the storage tank (K)

\(T_{\text{so}}\) :

HTF exit temperature from the storage tank (K)

\(T_{\text{sun}}\) :

Sun temperature (K)

\(U_{\text{loss}}\) :

Overall heat loss coefficient (W m−2 K−1)

\(\eta_{\text{Charging}}\) :

Charging efficiency of the storage tank (%)

\(\eta_{\text{PTC}}\) :

PTC efficiency (%)

\(\varphi_{\text{charging}}\) :

Exergy efficiency of the system during the charging process (%)

A a :

Aperture area of PTC (m2)

E C :

Energy collected by the PTC (W)

E s :

Energy accumulated in the TES tank (W)

\(\dot{m}\) :

Flow rate of oil (kg s−1)

m :

Mass of HTF and PCM (kg)

\(I\) :

Solar incident radiation (W m−2)

\({\text{LMTD}}\) :

Logarithmic mean temperature difference (°C)

x + 10:

10-min-time interval from xth time

x:

At any instant of time

a:

Ambient/aperture

i:

Initial/inlet

o:

Outlet

TES:

Thermal energy storage

CR:

Concentration ratio

HTF:

Heat transfer fluid

PTC:

Parabolic trough collector

PCM:

Phase change material

References

  1. Reddy KS, Kumar KR, Ajay CS. Experimental investigation of porous disc enhanced receiver for solar parabolic trough collector. Renewable Energy. 2015;77:308–19.

    Article  Google Scholar 

  2. Ravi Kumar K, Reddy KS. Effect of porous disc receiver configurations on performance of solar parabolic trough concentrator. Heat Mass Transf. 2012;48:555–71.

    Article  Google Scholar 

  3. Lei D, Li Q, Wang Z, Li J. An experimental study of thermal characterization of parabolic trough receivers. Energy Convers Manag. 2013;69:107–15.

    Article  Google Scholar 

  4. Wang P, Liu DY, Xu C. Numerical study of heat transfer enhancement in the receiver tube of a direct steam generation a with a parabolic trough by inserting metal foams. Appl Energy. 2013;102:449–60.

    Article  Google Scholar 

  5. Lu J, Yuan Q, Ding J, Wang W, Liang J. Experimental studies on non uniform heat transfer and deformation performances for trough solar receiver. Appl Therm Eng. 2016;109:497–506.

    Article  Google Scholar 

  6. Borello D, Corsini A, Delibra G, Evangelisti S, Micangeli A. Experimental and computational investigation of a new solar integrated collector storage system. Appl Energy. 2012;97:982–9.

    Article  Google Scholar 

  7. Padilla RV, Demirkaya G, Goswami DY, Stefanakos E, Rahman MM. Heat transfer analysis of parabolic trough solar receiver. Appl Energy. 2011;88(12):5097–110.

    Article  Google Scholar 

  8. Beemkumar N, Karthikeyan A, Yuvarajan D, Lakshmi Shankar S. Experimental investigation on improving the heat transfer of cascaded thermal storage system using different fins. Arab J Sci Eng. 2017;42(5):2055–65.

    Article  CAS  Google Scholar 

  9. Kumaresan G, Sridhar R, Velraj R. Performance studies of a solar parabolic trough collector with a thermal energy storage system. Energy. 2012;47:395–402.

    Article  Google Scholar 

  10. Nagappan B, Alagu K, Devarajan Y, Munuswamy DB. Energy and exergy analysis of multi-temperature PCMs employed in a latent heat storage system and parabolic trough collector. J Non-Equilib Thermodyn. 2018;43(3):211–20.

    Article  CAS  Google Scholar 

  11. Wu YT, Liu SW, Xiong YX, Ma CF, Ding YL. Experimental study on the heat transfer characteristics of a low melting point salt in a parabolic trough solar collector system. Appl Therm Eng. 2015;89:748–54.

    Article  Google Scholar 

  12. Bellos E, Tzivanidis C. Thermal efficiency enhancement of nanofluid-based parabolic trough collectors. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7056-7.

    Article  Google Scholar 

  13. Tang Z, Zhao X-P, Li Z-Y, Tao W-Q. Multi-scale numerical analysis of flow and heat transfer for a parabolic trough collector. Int J Heat Mass Transf. 2017;106:526–38.

    Article  CAS  Google Scholar 

  14. Ye W-B. Enhanced latent heat thermal energy storage in the double tubes using fins. J Therm Anal Calorim. 2017;128:533–40.

    Article  CAS  Google Scholar 

  15. Yuan F, Li M-J, Ma Z, Jin B, Liu Z. Experimental study on thermal performance of high-temperature molten salt cascaded latent heat thermal energy storage system. Int J Heat Mass Transf. 2018;118:997–1011.

    Article  CAS  Google Scholar 

  16. Zhu L, Yang Y, Chen S, Sun Y. Numerical study on the thermal performance of lightweight temporary building integrated with phase change materials. Appl Therm Eng. 2018. https://doi.org/10.1016/j.applthermaleng.2018.03.103.

    Article  Google Scholar 

  17. Elarga H, Fantucci S, Serra V, Zecchin R, Benini E. Experimental and numerical analyses on thermal performance of different typologies of PCMs integrated in the roof space. Energy Build. 2017;150:546–57.

    Article  Google Scholar 

  18. Tao YB, He YL. Numerical study on coupled fluid flow and heat transfer process in parabolic trough solar collector tube. Sol Energy. 2010;84:1863–72.

    Article  Google Scholar 

  19. Kennedy CE, Terwilliger K. Optical durability of candidate solar reflectors. ASME J Sol Energy Eng. 2005;127:262–9.

    Article  CAS  Google Scholar 

  20. Kumaresan G, Santosh R, Raju G, Velraj R. Experimental and numerical investigation of solar flat plate cooking unit for domestic applications. Energy. 2018;157:436–47.

    Article  CAS  Google Scholar 

  21. Nagappan B, Alagu K, Devarajan Y. Heat transfer enhancement of a cascaded thermal energy storage system with various encapsulation arrangements. Therm Sci. 2017. https://doi.org/10.2298/TSCI160926227N.

    Article  Google Scholar 

  22. Moens L, Blake DM, Rudnicki DL, Hale MJ. Advanced thermal storage fluids for solar parabolic trough systems. J SolEnergy Eng. 2003;125:112–6.

    CAS  Google Scholar 

  23. Stalin PMJ, Arjunan TV, Matheswaran MM, Sadanandam N. Experimental and theoretical investigation on the effects of lower concentration CeO2/water nanofluid in flat-plate solar collector. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6865-4.

    Article  Google Scholar 

  24. Bellos E, Tzivanidis C, Papadopoulos A. Enhancing the performance of a linear Fresnel reflector using nanofluids and internal finned absorber. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-6989-1.

    Article  Google Scholar 

  25. Pavlovic S, Bellos V, Stefanovic V, Tzivanidis C. Optimum geometry of parabolic trough collectors with optical and thermal criteria. Int Rev Appl Sci Eng. 2017;8(1):45–50.

    Article  Google Scholar 

  26. Xu HJ, Zhao CY. Thermodynamic analysis and optimization of cascaded latent heat storage system for energy efficient utilization. Energy. 2015;90:1662–73.

    Article  Google Scholar 

  27. Beemkumar N, Karthikeyan A, Ramachandran S. Heat transfer enhancement of LHSS system using different encapsulating material with and without fins. Int J Ambient Energy. 2017;38:77–84.

    Article  CAS  Google Scholar 

  28. Bellos E, Tzivanidis C. A review of concentrating solar thermal collectors with and without nanofluids. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7183-1.

    Article  Google Scholar 

  29. Pandey AK, Tyagi VV, Park SR, et al. Comparative experimental study of solar cookers using exergy analysis. J Therm Anal Calorim. 2012;109:425–31.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagappan Beemkumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beemkumar, N., Yuvarajan, D., Karthikeyan, A. et al. Comparative experimental study on parabolic trough collector integrated with thermal energy storage system by using different reflective materials. J Therm Anal Calorim 137, 941–948 (2019). https://doi.org/10.1007/s10973-018-07989-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-07989-6

Keywords

Navigation