Skip to main content
Log in

Experimental study on the effect of copper oxide nanoparticles on thermophysical properties of ethylene glycol–water for using in indirect heater at city gate stations

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study aimed to investigate the increase in heat transfer in the indirect heater at a city gate station (CGS) with the addition of copper oxide (CuO) nanoparticles to water–ethylene glycol base fluids. Indirect heaters are typically used at CGSs to raise the heat transfer coefficient of output gas flow from − 5 to 15 °C. Moreover, manufacturing laboratory equipment in the presence of water–ethylene glycol base fluid and the nanoparticle in volume fractions of 0.05, 0.1, 0.2, and 0.3 at a temperature of 40–70 °C was discussed using dimensional simulation and analysis. The physical properties of the base fluid and nanofluid were measured using precise devices. Heat transfer tests for the base and nanofluid, as well as replacing of the air by gas, were conducted in a simulated and developed device. According to the obtained results with respect to the changes in convection and conduction heat transfer, enhancement of temperature difference at a rate of 36% was observed in the indirect heater with nanoparticle volume concentration of 0.2% at a temperature of 70 °C. Moreover, the Nusselt number showed a relatively good agreement with theoretical discussions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

A :

Cross-sectional area (m2)

C p :

Specific heat (J kg−1 K−1)

D :

Pipe diameter (m)

H :

Heat transfer coefficient (W m−2 K−1)

K:

Thermal conductivity (W m−1 K−1)

L p :

Nanotube length (m)

L :

Length of test tube (m)

Nu :

Nusselt number

P :

Pressure (Pa)

Re :

Reynolds number

T :

Temperature (K)

U :

Velocity vector (m s−1)

V :

Volume (m3)

Pr :

Prandtl number

T m :

Mean temperature (K)

\(\mathop m\limits^{.}\) :

Mass rate (kg s−1)

bf:

Base fluid

P:

Nanoparticle

i:

Inlet

O:

Outlet

Exp:

Experimental

C:

Cold fluid

H:

Hot fluid

nf:

Nanofluid

m:

Average

EG:

Ethylene glycol

W:

Water

CuO:

Copper oxide

\(\Delta P\) :

Pressure drop (P)a

\(\rho\) :

Density (kg m−3)

µ :

Dynamic viscosity (kg m−1 s−1)

\(\varphi\) :

Volume fraction

References

  1. Kargaran M, Arabkoohsar A, Hagighat-Hosini SJ, Farzaneh-Kord V, Farzaneh-Gord M. The second law analysis of natural gas behavior within a vortex tube. Therm Sci. 2013;17(4):1079–92.

    Article  Google Scholar 

  2. Farzaneh-Gord M, Hashemi S, Sadi M. Energy destruction in Iran’s natural gas pipe line network. Energy Explor Exploit. 2007;25(6):393–406.

    Article  Google Scholar 

  3. Farzaneh-Gord M, Sadi M. Enhancing energy output in Iran’s natural gas pressure drop stations by cogeneration. J Energy Inst. 2008;81(4):191–6.

    Article  CAS  Google Scholar 

  4. Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles, no.1 ANL/MSD/CP—84938, CONF-951135--29. Argonne National Lab., IL, USA. 1995.

  5. Nadooshan AA, Esfe MH, Afrand M. Evaluation of rheological behavior of 10W40 lubricant containing hybrid nano-material by measuring dynamic viscosity. Phys E. 2017;92:47–54.

    Article  CAS  Google Scholar 

  6. Toghraie D, Chaharsoghi VA, Afrand M. Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid. J Therm Anal Calorim. 2016;125:527–35.

    Article  CAS  Google Scholar 

  7. Hemmat Esfe M, Naderi A, Akbari M, Afrand M, Karimipour A. Evaluation of thermal conductivity of COOH-functionalized MWCNTs/water via temperature and solid volume fraction by using experimental data and ANN methods. J Therm Anal Calorim. 2015;121:1273–8.

    Article  CAS  Google Scholar 

  8. Hemmat Esfe M, Saedodin S, Yan W-M, Afrand M, Sina N. Study on thermal conductivity of water-based nanofluids with hybrid suspensions of CNTs/Al2O3 nanoparticles. J Therm Anal Calorim. 2016;124:455–60.

    Article  CAS  Google Scholar 

  9. Nadooshan AA. An experimental correlation approach for predicting thermal conductivity of water-EG based nanofluids of zinc oxide. Phys E Low Dimens Syst Nanostruct. 2017;87:15–9.

    Article  CAS  Google Scholar 

  10. Dardan E, Afrand M, Isfahani AHM. Effect of suspending hybrid nano-additives on rheological behavior of engine oil and pumping power. Appl Therm Eng. 2016;109:524–34.

    Article  CAS  Google Scholar 

  11. Goodarzi M, Kherbeet AS, Afrand M, Sadeghinezhad E, Mehrali M, Zahedi P, Wongwises S, Dahari M. Investigation of heat transfer performance and friction factor of a counter-flow double-pipe heat exchanger using nitrogen-doped, graphene-based nanofluids. Int Commun Heat Mass Transf. 2016;76:16–23.

    Article  CAS  Google Scholar 

  12. Toghraie D, Mokhtari M, Afrand M. Molecular dynamic simulation of Copper and Platinum nanoparticles Poiseuille flow in a nanochannels. Phys E. 2016;84:152–61.

    Article  CAS  Google Scholar 

  13. Afrand M, Najafabadi KN, Sina N, Safaei MR, Kherbeet AS, Wongwises S, Dahari M. Prediction of dynamic viscosity of a hybrid nano-lubricant by an optimal artificial neural network. Int Commun Heat Mass Transf. 2016;76:209–14.

    Article  CAS  Google Scholar 

  14. Vafaei M, Afrand M, Sina N, Kalbasi R, Sourani F, Teimouri H. Evaluation of thermal conductivity of MgO-MWCNTs/EG hybrid nanofluids based on experimental data by selecting optimal artificial neural networks. Phys E. 2017;85:90–6.

    Article  CAS  Google Scholar 

  15. Shamshirband S, Malvandi A, Karimipour A, Goodarzi M, Afrand M, Petković D, Dahari M, Mahmoodian N. Performance investigation of micro- and nano-sized particle erosion in a 90° elbow using an ANFIS model. Powder Technol. 2015;284:336–43.

    Article  CAS  Google Scholar 

  16. Afrand M. Experimental study on thermal conductivity of ethylene glycol containing hybrid nano-additives and development of a new correlation. Appl Therm Eng. 2017;110:1111–9.

    Article  CAS  Google Scholar 

  17. Afrand M, Nazari Najafabadi K, Akbari M. Effects of temperature and solid volume fraction on viscosity of SiO2-MWCNTs/SAE40 hybrid nanofluid as a coolant and lubricant in heat engines. Appl Therm Eng. 2016;102:45–54.

    Article  CAS  Google Scholar 

  18. Shahsavani E, Afrand M, Kalbasi R. Experimental study on rheological behavior of water–ethylene glycol mixture in the presence of functionalized multi-walled carbon nanotubes. J Therm Anal Calorim 1-9. https://doi.org/10.1007/s10973-017-6711-8.

  19. Afrand M, Nadooshan AA, Hassani M, Yarmand H, Dahari M. Predicting the viscosity of multi-walled carbon nanotubes/water nanofluid by developing an optimal artificial neural network based on experimental data. Int Commun Heat Mass Transf. 2016;77:49–53.

    Article  CAS  Google Scholar 

  20. Nadooshan, AA, Esfe MH, Afrand M. Prediction of rheological behavior of SiO2-MWCNTs/10W40 hybrid nanolubricant by designing neural network. J Therm Anal Calorim 1-8. https://doi.org/10.1007/s10973-017-6688-3.

  21. Xuan Y, Li Q. Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow. 2000;21(1):58–64.

    Article  CAS  Google Scholar 

  22. Li Q, Xuan Y. Convective heat transfer and flow characteristics of Cu-water nanofluid. Sci China Ser E Technol Sci. 2002;45(4):408–16.

    Article  CAS  Google Scholar 

  23. Farzaneh-Gord M, Arabkoohsar A, Rezaei M, Deymi-DashteBayaz M, Rahbari HR. Feasibility of employing solar energy in natural gas pressure drop stations. J Energy Inst. 2011;84(3):165–73.

    Article  CAS  Google Scholar 

  24. Farzaneh-Gord M, Arabkoohsar A, Dasht-bayaz MD, Farzaneh-Kord V. Feasibility of accompanying uncontrolled linear heater with solar system in natural gas pressure drop stations. Energy. 2012;41(1):420–8.

    Article  Google Scholar 

  25. Farzaneh-Gord M, Arabkoohsar A, Dasht-bayaz MD, Machado L, Koury RNN. Energy and exergy analysis of natural gas pressure reduction points equipped with solar heat and controllable heaters. Renew Energy. 2014;72:258–70.

    Article  Google Scholar 

  26. Behseresht A, Noghrehabadi A, Ghalambaz M. Natural-convection heat and mass transfer from a vertical cone in porous media filled with nanofluids using the practical ranges of nanofluids thermo-physical properties. Chem Eng Res Des. 2014;92(3):447–52.

    Article  CAS  Google Scholar 

  27. Noghrehabadi A, Ghalambaz M, Ghanbarzadeh A. Effects of variable viscosity and thermal conductivity on natural-convection of nanofluids past a vertical plate in porous media. J Mech. 2014;30(03):265–75.

    Article  Google Scholar 

  28. Hussein AM, Bakar RA, Kadirgama K, Sharma KV. Heat transfer enhancement with elliptical tube under turbulent flow TiO2-water nanofluid. Therm Sci. 2016;20(1):89–97.

    Article  Google Scholar 

  29. Mehmood R, Nadeem S, Sher Akbar N. Non-aligned ethylene-glycol 30% based stagnation point fluid over a stretching surface with hematite nano particles. J Appl Fluid Mech. 2016;9:1359–66.

    Article  Google Scholar 

  30. Masuda H, Ebata A, Teramae K. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles, pp. 227-233 (1993).

  31. Wen D, Ding Y. Formulation of nanofluids for natural convective heat transfer applications. Int J Heat Fluid Flow. 2005;26(6):855–64.

    Article  CAS  Google Scholar 

  32. Xuan Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf. 2000;43(19):3701–7.

    Article  CAS  Google Scholar 

  33. Buckingham E. On physically similar systems: illustrations of the use of dimensional equations. Phys Rev. 1914;4(4):345–76.

    Article  Google Scholar 

  34. Langhaar HL. Dimensional analysis and theory of models, vol. 2. New York: Wiley; 1951.

    Google Scholar 

  35. Handbook, ASHRAE Fundamentals. American society of heating, refrigerating and air-conditioning engineers. Atlanta: Inc.; 2009.

    Google Scholar 

  36. Ebrahimnia-Bajestan E, Moghadam MC, Niazmand H, Daungthongsuk W, Wongwises S. Experimental and numerical investigation of nanofluids heat transfer characteristics for application in solar heat exchangers. Int J Heat Mass Transf. 2016;92:1041–52.

    Article  CAS  Google Scholar 

  37. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf Int J. 1998;11(2):151–70.

    Article  CAS  Google Scholar 

  38. Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20(4):571.

    Article  CAS  Google Scholar 

  39. Yu W, Choi SUS. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanopart Res. 2003;5(1–2):167–71.

    Article  CAS  Google Scholar 

  40. Dittus FW, Boelter LMK. Heat transfer in automobile radiators of the tubular type. Int Commun Heat Mass Transf. 1985;12(1):3–22.

    Article  Google Scholar 

  41. Ding Y, Alias H, Wen D, Williams RA. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf. 2006;49(1):240–50.

    Article  CAS  Google Scholar 

  42. He Y, Jin Y, Chen H, Ding Y, Cang D, Huilin L. Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. Int J Heat Mass Transf. 2007;50(11):2272–81.

    Article  CAS  Google Scholar 

  43. Heris SZ, Esfahany MN, Etemad SG. Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube. Int J Heat Fluid Flow. 2007;28(2):203–10.

    Article  CAS  Google Scholar 

  44. Anoop KB, Sundararajan T, Das SK. Effect of particle size on the convective heat transfer in nanofluid in the developing region. Int J Heat Mass Transf. 2009;52(9):2189–95.

    Article  CAS  Google Scholar 

  45. Liu B. Fuzzy process, hybrid process and uncertain process. J Uncertain Syst. 2008;2(1):3–16.

    Google Scholar 

  46. Lira I. Evaluating the measurement uncertainty: fundamentals and practical guidance. Am J Phys. 2003;71:93–4.

    Article  Google Scholar 

  47. Kline SJ, McClintock FA. Describing uncertainties in single-sample experiments. Mech Eng. 1953;75(1):3–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Rahmati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmati, A.R., Reiszadeh, M. Experimental study on the effect of copper oxide nanoparticles on thermophysical properties of ethylene glycol–water for using in indirect heater at city gate stations. J Therm Anal Calorim 135, 73–82 (2019). https://doi.org/10.1007/s10973-017-6946-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6946-4

Keywords

Navigation