Journal of Thermal Analysis and Calorimetry

, Volume 132, Issue 2, pp 1055–1064 | Cite as

Investigation of hydrolysis of lithium oxide by thermogravimetry, calorimetry and in situ FTIR spectroscopy

  • Guy Weber
  • Elisabeth Sciora
  • Jordan Guichard
  • Frédéric Bouyer
  • Igor Bezverkhyy
  • J. Marcos Salazar
  • Céline Dirand
  • Frédéric Bernard
  • Hervé Lecoq
  • Rémy Besnard
  • Jean-Pierre Bellat


The mechanism of hydrolysis of lithium oxide (Li2O) was studied by thermogravimetry, calorimetry and in situ infrared spectroscopy under water (H2O) vapor pressure at 298 K. Additional infrared measurements were also performed with heavy water (D2O) to go deeper in the understanding of the mechanism. First, this study showed that the pristine oxide is composed of micrometric particles of lithium oxide core surrounded by a thin protective layer of lithium hydroxide (LiOH). When exposed to a pressure below 5 hPa, the hydrolysis of the particles proceeds mainly through the adsorption of water molecules on the external surface of the lithium hydroxide layer and to a lesser extent to the formation of lithium hydroxide for the smallest particles. By increasing the pressure, the reaction proceeds through the alternative formation of lithium hydroxide monohydrate (LiOH·H2O) and lithium hydroxide. The kinetics of this reaction is controlled by water diffusion through the lithium hydroxide layer. In such a process, the formation of the monohydrate starts when the LiOH layer reaches some critical thickness.


Hydrolysis Calorimetry Thermogravimetry FTIR Li2LiOH LiOH·H2



The authors would like to thank all members of ICB (UMR 6303 CNRS-Université de Bourgogne Franche-Comté) for their contribution to this paper: Lucien Saviot for the Raman analysis, Frederic Herbst for the SEM analysis, Nicolas Geoffroy for the XRD analysis.


  1. 1.
    Labbé JF, Daw G. Panorama 2011 du marché du lithium. 2012.
  2. 2.
    Aurbach D, Weissman I, Zaban A, Dan P. On the role of water contamination in rechargeable Li batteries. Electrochim Acta. 1999;45(7):1135–40.CrossRefGoogle Scholar
  3. 3.
    Sifuentes A, Stowe AC, Smyrl N. Determination of the role of Li2O on the corrosion of lithium hydride. J Alloy Compd. 2013;580(1(0)):S271–3.CrossRefGoogle Scholar
  4. 4.
    Guichard J, Bouyer F, Sciora E, Bernard F, Lecoq H, Besnard R, Bellat JP. Hydrolysis of lithium hydride under low relative humidity. Int J Hydrogen Energy. 2015;40(37):12736–44.CrossRefGoogle Scholar
  5. 5.
    Kamali AR, Fray DJ, Schwandt C. Thermokinetic characteristics of lithium chloride. J Therm Anal Calorim. 2011;104(2):619–26.CrossRefGoogle Scholar
  6. 6.
    Berkowitz J, Meschi DJ, Chupka WA. Heterogeneous reactions studied by mass spectrometry. II. Reaction of Li2O(s) with H2O(g). J Chem Phys. 1960;33(2):533–40.CrossRefGoogle Scholar
  7. 7.
    Johnson GK, Grow RT, Hubbard WN. The enthalpy of formation of lithium oxide (Li2O). J Chem. Thermodyn. 1975;7(8):781–6.CrossRefGoogle Scholar
  8. 8.
    Tetenbaum M, Johnson CE. Vaporization behavior of lithium oxide: effect of water vapor in helium carrier gas. J Nucl Mater. 1984;120(2–3):213–6.CrossRefGoogle Scholar
  9. 9.
    Yoshida H, Konishi S, Takeshita H, Kurasawa T, Watanabe H, Naruse Y. Water adsorption on lithium oxide pellets in helium sweep gas stream. J Nucl Mater. 1984;123(1–3):934.CrossRefGoogle Scholar
  10. 10.
    Terai T, Mohri H, Takahashi Y. Equilibrium pressure of water vapor over a Li2O(s)–LiOH(s, l) mixture. J Nucl Mater. 1991;179:808–11.CrossRefGoogle Scholar
  11. 11.
    Tetenbaum M, Johnson CE. Partial pressures of H2O above the diphasic Li2O(s)–LiOH(s, l) system. J Nucl Mater. 1984;126(1):25–9.CrossRefGoogle Scholar
  12. 12.
    Takeshita H, Watanabe H. Dynamic measurements of water adsorption on Li2O. J Nucl Mater. 1994;208(1–2):186–90.CrossRefGoogle Scholar
  13. 13.
    Oda T, Oya Y, Olivares RU, Tanaka S. Reactivity of H2O gas with the surface of polycrystalline Li2O pellet. Fusion Eng Des. 2006;81(1–7):613–8.CrossRefGoogle Scholar
  14. 14.
    Simonot-Grange MH, Elm’Chaouri A, Weber G, Dufresne P, Raatz F, Joly JF. Characterization of the dealumination effect into H faujasites by adsorption: part 1. The water molecule as a structural aluminum ion selective probe. Zeolites. 1992;12(2):155–159.CrossRefGoogle Scholar
  15. 15.
    Simonot-Grange MH, Bertrand O, Pilverdier E, Bellat JP, Paulin C. Differential calorimetric enthalpies of adsorption of p-xylene and m-xylene on Y faujasites at 25 °C. J Therm Anal. 1997;48(4):741–54.CrossRefGoogle Scholar
  16. 16.
    Bellat JP. Study of selective adsorption of gases by calorimetry. In: Auroux A, editor. Calorimetry and thermal methods in catalysis. Berlin: Springer; 2013. p. 273–318.CrossRefGoogle Scholar
  17. 17.
    Ballandras A, Weber G, Paulin C, Bellat J-P, Rotger M. Communication: evidence of structural phase transitions in silicalite-1 by infrared spectroscopy. J Chem Phys. 2013;139(9):091103.CrossRefGoogle Scholar
  18. 18.
    Salazar JM, Weber G, Simon JM, Bezverkhyy I, Bellat JP. Characterization of adsorbed water in MIL-53(Al) by FTIR spectroscopy and ab initio calculations. J Chem Phys. 2015;142(12):124702.CrossRefGoogle Scholar
  19. 19.
    Tanaka S, Taniguchi M, Nakatani M, Yamaki D, Yamawaki M. In situ observation of surface –OH and –OD on lithium oxide. J Nucl Mater. 1995;218(3):335–8.CrossRefGoogle Scholar
  20. 20.
    Buchanan RA, Kinsey EL, Caspers HH. Infrared absorption spectra of LiOH and LiOD. J Chem Phys. 1962;36(10):2665–75.CrossRefGoogle Scholar
  21. 21.
    Jones LH. The infrared spectra and structure of LiOH, LiOH·H2O and the deuterium species. Remark on fundamental frequency of OH. J Chem Phys. 1954;22(2):217–9.CrossRefGoogle Scholar
  22. 22.
    Ishii Y, Nagasaki T, Igawa N, Watanabe H, Ohno H. Temperature-dependence of the Raman-spectrum in lithium-oxide single-crystal. J Am Ceram Soc. 1991;74(9):2324–6.CrossRefGoogle Scholar
  23. 23.
    Osaka T, Shindo I. Infrared reflectivity and Raman scattering of lithium oxide single crystals. Solid State Commun. 1984;51(6):421–4.CrossRefGoogle Scholar
  24. 24.
    Rossini FD. Selected values of chemical thermodynamic properties. Circular of the National Bureau of Standards 500 (chiefly tables), vol. IV. Washington: U.S. Government Printing Office; 1952.Google Scholar
  25. 25.
    Auroux A. Calorimetry and thermal methods in catalysis. 2013.
  26. 26.
    Mazeina L, Navrotsky A. Enthalpy of water adsorption and surface enthalpy of goethite (α-FeOOH) and hematite (α-Fe2O3). Chem Mater. 2007;19(4):825–33.CrossRefGoogle Scholar
  27. 27.
    Bolis V, Fubini B, Coluccia S, Mostacci E. Surface hydration of crystalline and amorphous silicas. J Therm Anal. 1985;30(6):1283–92.CrossRefGoogle Scholar
  28. 28.
    Fubini B, Bolis V, Bailes M, Stone FS. The reactivity of oxides with water vapor. Solid State Ionics. 1989;32:258–72.CrossRefGoogle Scholar
  29. 29.
    Castro RHR, Quach DV. Analysis of anhydrous and hydrated surface energies of gamma-Al2O3 by water adsorption microcalorimetry. J Phys Chem C. 2012;116(46):24726–33.CrossRefGoogle Scholar
  30. 30.
    Wu D, Guo X, Sun H, Navrotsky A. Energy landscape of water and ethanol on silica surfaces. J Phys Chem C. 2015;119(27):15428–33.CrossRefGoogle Scholar
  31. 31.
    Parker SF, Refson K, Bewley RI, Dent G. Assignment of the vibrational spectra of lithium hydroxide monohydrate, LiOH·H2O. J Chem Phys. 2011;134(8):084503.CrossRefGoogle Scholar
  32. 32.
    Hase Y. Infrared active vibrational modes of lithium hydroxide monohydrate. Inorg Nucl Chem Lett. 1980;16:159–63.CrossRefGoogle Scholar
  33. 33.
    Prost R. The influence of the Christiansen effect on I.R. spectra of powders. Clays Clay Miner. 1973;21(5):363–8.CrossRefGoogle Scholar
  34. 34.
    Liu XD, Hou LT, Wang HT. Investigations into the mid-infrared Christiansen effect of the dispersive materials. Infrared Phys Technol. 2002;43(6):401–5.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Guy Weber
    • 1
  • Elisabeth Sciora
    • 1
  • Jordan Guichard
    • 1
    • 2
  • Frédéric Bouyer
    • 1
  • Igor Bezverkhyy
    • 1
  • J. Marcos Salazar
    • 1
  • Céline Dirand
    • 1
  • Frédéric Bernard
    • 1
  • Hervé Lecoq
    • 2
  • Rémy Besnard
    • 2
  • Jean-Pierre Bellat
    • 1
  1. 1.Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRSUniversité de Bourgogne Franche-ComtéDijon CedexFrance
  2. 2.CEA, DAM, ValducIs sur TilleFrance

Personalised recommendations