Skip to main content
Log in

In situ microcalorimetric investigation on effects of surfactants on cluster-shaped Ni-doped Fe3O4 formation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In situ calorimetric technology was firstly employed to study the effects of surfactants on the materials formation. In the present study, different kinds of surfactants were selected as additives during cluster-shaped Ni-doped Fe3O4 synthesis. Experimental results indicate that the surfactants reduced the particle size and changed the cationic distribution, compositions and magnetic properties of the as-synthesized materials. The microcalorimetric results demonstrate that the sample formation was endothermal and divided into five processes based on the heat-flow versus time curves. No significant effects of the surfactants on these processes were found. However, the surfactants addition affected the heat flow and the temperatures for peaks in these curves. The surfactant adsorption on the crystal facet and nuclei of the sample, and the interactions among surfactants and ions contained in the system may be mainly the reason for these effects. These results demonstrate different actions of surfactants and ligands on materials formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Hong D, Yamada Y, Nagatomi T, Takai Y, Fukuzumi S. Catalysis of Nickel ferrite for photocatalytic water oxidation using [Ru(bpy)3]2+ and S2O8 2−. J Am Chem Soc. 2012;134:19572–5.

    Article  CAS  Google Scholar 

  2. Zhang G, Yu L, Wu HB, Hoster HE, Lou XWD. Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. Adv Mater. 2012;24:4609–13.

    Article  CAS  Google Scholar 

  3. Hu W, Qin N, Wu G, Lin Y, Li S, Bao D. Opportunity of spinel ferrite materials in nonvolatile memory device applications based on their resistive switching performances. J Am Chem Soc. 2012;134:14658–61.

    Article  CAS  Google Scholar 

  4. Song Q, Zhang ZJ. Controlled synthesis and magnetic properties of bimagnetic spinel ferrite CoFe2O4 and MnFe2O4 nanocrystals with core-shell architecture. J Am Chem Soc. 2012;134:10182–90.

    Article  CAS  Google Scholar 

  5. Xuan S, Wang YXJ, Yu JC, Leung CF. Tuning the grain size and particle size of superparamagnetic Fe3O4 microparticles. Chem Mater. 2009;21:5079–87.

    Article  CAS  Google Scholar 

  6. Deng H, Li X, Peng Q, Wang X, Chen J, Li Y. Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem Int Ed. 2005;117:2842–5.

    Article  Google Scholar 

  7. Sivagurunathan P, Gibin SR. Preparation and characterization of nickel ferrite nano particles by co-precipitation method with citrate as chelating agent. J Mater Sci-Mater Electron. 2016;27:2601–7.

    Article  CAS  Google Scholar 

  8. Cherian CT, Sundaramurthy J, Reddy MV, Suresh KP, Mani K, Pliszka D, Sow CH, Ramakrishna S, Chowdari BVR. Morphologically robust NiFe2O4 nanofibers as high capacity Li-ion battery anode material. ACS Appl Mater Interfaces. 2013;5:9957–63.

    Article  CAS  Google Scholar 

  9. Chinnasamy CN, Narayanasamy A, Ponpandian N, Chattopadhyay K, Shinoda K, Jeyadevan B, Tohji K, Nakatsuka K, Furubayashi T, Nakatani I. Mixed spinel structure in nanocrystalline NiFe2O4. Phys Rev B. 2001;63:184108.

    Article  Google Scholar 

  10. Naseri MG, Saion EB, Ahangar HA, Hashim M, Shaari AH. Synthesis and characterization of manganese ferrite nanoparticles by thermal treatment method. J Magn Magn Mater. 2011;323:1745–9.

    Article  Google Scholar 

  11. Tiano AL, Papaefthymiou GC, Lewis CS, Han J, Zhang C, Li Q, Shi C, Abeykoon AMM, Billinge SJL, Stach E, Thomas J, Guerrero K, Munayco P, Munayco J, Scorzelli RB, Burnham P, Viescas AJ, Wong SS. Correlating size and composition-dependent effects with magnetic, mössbauer, and pair distribution function measurements in a family of catalytically active ferrite nanoparticles. Chem Mater. 2015;27:3572–92.

    Article  CAS  Google Scholar 

  12. Bateer B, Tian C, Qu Y, Du S, Yang Y, Ren Z, Pan K, Fu H. Synthesis, size and magnetic properties of controllable MnFe2O4 nanoparticles with versatile surface functionalities. Dalton Trans. 2014;43:9885–91.

    Article  CAS  Google Scholar 

  13. Zhao B, Hua B, Wang H, Nan Z. Modified magnetic properties of ZnLa0.02Fe1.98O4 clusters by anionic surfactant with solvothermal method. Mater Lett. 2013;92:75–7.

    Article  CAS  Google Scholar 

  14. Zhao B, Nan Z. Effects of CTAB on magnetic properties of ZnLa0.02 Fe1.98O4 crystals. J Alloy Compd. 2013;580:321–6.

    Article  CAS  Google Scholar 

  15. Quan L, Zhang H, Xu L. The non-isothermal cyclization kinetics of amino-functionalized carbon nanotubes/polyacrylonitrile composites by in situ polymerization. J Therm Anal Calorim. 2015;119:1081–9.

    Article  CAS  Google Scholar 

  16. Vasilakos SP, Tarantili PA. In situ monitoring by DSC and modeling of curing of vinyl polysiloxanes in layered silicate nanocomposites. J Therm Anal Calorim. 2017;127:2049–58.

    Article  CAS  Google Scholar 

  17. Wang L, Ma Z, Liu S, Huang Z. In situ growth mechanism and the thermodynamic functions of zinc oxide nano-arrays and hierarchical structure. J Therm Anal Calorim. 2014;115:201–8.

    Article  CAS  Google Scholar 

  18. Zhu J, Nan Z. Zn-Doped Fe3O4 nanosheet formation induced by EDA with high magnetization and an investigation of the formation mechanism. J Phys Chem C. 2017;121:9612–20.

    Article  CAS  Google Scholar 

  19. Holzwarth U, Gibson N. The Scherrer equation versus the ‘Debye-Scherrer equation’. Nat Nanotechnol. 2011;6:534.

    Article  CAS  Google Scholar 

  20. Shen P, Zhang H, Zhang S, Yuan P, Yang Y, Zhang Q, Zhang X. Solvothermal synthesis of mesoporous magnetite nanoparticles for Cr(IV) ions uptake and microwave absorption. J Nanopart Res. 2016;18:129.

    Article  Google Scholar 

  21. de la Vega AE, Garza-Navarro MA, Durán-Guerrero JG, Cortez IEM, Lucio-Porto R, González-González V. Tailoring the magnetic properties of cobalt-ferrite nanoclusters. J Nanopart Res. 2016;18:18.

    Article  Google Scholar 

  22. Gabal MA, Kosa S, Almutairi TS. Cr-substitution effect on the structural and magnetic properties of nano-sized NiFe2O4 prepared via novel chitosan route. J Magn Magn Mater. 2014;356:37–41.

    Article  CAS  Google Scholar 

  23. Baykal A, Kasapoğlu N, Köseoğlu Y, Toprak MS, Bayrakdar H. CTAB-assisted hydrothermal synthesis of NiFe2O4 and its magnetic characterization. J Alloy Compd. 2008;464:514–8.

    Article  CAS  Google Scholar 

  24. Yadav RS, Kuritka I, Vilcakova J, Havlica J, Masilko J, Kalina L, Tkacz J, Enev J, Hajdúchová M. Structural, magnetic, dielectric, and electrical properties of NiFe2O4 spinel ferrite nanoparticles prepared by honey-mediated sol-gel combustion. J Phys Chem Solids. 2017;107:150–61.

    Article  CAS  Google Scholar 

  25. Angadi VJ, Choudhury L, Sadhana K, Liu HL, Sandhya R, Matteppanavar S, Rudraswamy B, Pattar V, Anavekar RV, Praveena K. Structural, electrical and magnetic properties of Sc3+ doped Mn-Zn ferrite nanoparticles. J Magn Magn Mater. 2017;424:1–11.

    Article  CAS  Google Scholar 

  26. Srinivasan TT, Srivastav CM, Venkataramani N, Patani MJ. Infrared absorption in spinel ferrites. Bull Mater Sci. 1984;6:1063–9.

    Article  CAS  Google Scholar 

  27. Jaffari GH, Rumaiz AK, Woicik JC, Shah SI. Influence of oxygen vacancies on the electronic structure and magnetic properties of NiFe2O4 thin films. J Appl Phys. 2012;111:093906.

    Article  Google Scholar 

  28. Baruwati B, Reddy KM, Manorama SV, Singh RK, Parkash O. Tailored conductivity behavior in nanocrystalline nickel ferrite. Appl Phys Lett. 2004;85:2833–5.

    Article  CAS  Google Scholar 

  29. Wühn M, Joseph Y, Bagus PS, Niklewski A, Püttner R, Reiss S, Weiss W, Martins M, Kaindl G, Wöll C. The electronic structure and orientation of styrene adsorbed on FeO(111) and Fe3O4(111) a spectroscopic investigation. J Phys Chem B. 2000;104:7694–701.

    Article  Google Scholar 

  30. Fujii T, Groot FMF, Sawatzky GA, Voogt FC, Hibma T, Okada K. In situ XPS analysis of various iron oxide films grown by NO2 -assisted molecular-beam epitaxy. Phys Rev B. 1999;59:3195.

    Article  CAS  Google Scholar 

  31. Liu J, Zhang Y, Nan Z. Facile synthesis of stoichiometric zinc ferrite nanocrystal clusters with superparamagnetism and high magnetization. Mater Res Bull. 2014;60:270–8.

    Article  CAS  Google Scholar 

  32. Jacobs JP, Maltha A, Reintjes JG, Drimal J, Ponec V, Brongersma HH. The surface of catalytically active spinels. J Catal. 1994;147:294–300.

    Article  CAS  Google Scholar 

  33. Feng S, Yang W, Wang Z. Synthesis of porous NiFe2O4 microparticles and its catalytic properties for methane combustion. Mater Sci Eng. B-Solid. 2011;176:1509–12.

    Article  CAS  Google Scholar 

  34. Mittal VK, Chandramohan P, Bera S, Srinivasan MP, Velmurugan S, Narasimhan SV. Cation distribution in NixMg1−xFe2O4 studied by XPS and Mössbauer spectroscopy. Solid State Commun. 2006;137:6–10.

    Article  CAS  Google Scholar 

  35. Carley AF, Rassias S, Roberts MW. The specificity of surface oxygen in the activation of adsorbed water at metal surfaces. Surf Sci. 1983;135:35–51.

    Article  CAS  Google Scholar 

  36. Sharma V, Chotia C, Tarachand T, Ganesan V, Okram GS. Influence of particle size and dielectric environment on the dispersion behaviour and surface plasmon in nickel nanoparticles. Phys Chem Chem Phys. 2017;19:14096–106.

    Article  CAS  Google Scholar 

  37. Chen L, Dai H, Shen Y, Bai J. Size-controlled synthesis and magnetic properties of NiFe2O4 hollow nanospheres via a gel-assistant hydrothermal route. J Alloy Compd. 2010;491:L33–8.

    Article  CAS  Google Scholar 

  38. Liu J, Bin Y, Matsuo M. Magnetic behavior of Zn-doped Fe3O4 nanoparticles estimated in terms of crystal domain size. J Phys Chem C. 2012;116:134–43.

    Article  CAS  Google Scholar 

  39. Willard MA, Nakamura Y, Laughlin DE, McHenry ME. Magnetic properties of ordered and disordered spinel-phase ferrimagnets. J Am Ceram Soc. 2010;82:3342–6.

    Article  Google Scholar 

  40. Nawale AB, Kanhe NS, Patil KR, Bhoraskar SV, Mathe VL, Das AK. Magnetic properties of thermal plasma synthesized nanocrystalline nickel ferrite (NiFe2O4). J Alloy Compd. 2011;509:4404–13.

    Article  CAS  Google Scholar 

  41. Jun YW, Lee JH, Cheon J. Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew Chem Int Ed. 2008;47:5122–35.

    Article  CAS  Google Scholar 

  42. Tanaka K, Narita A, Kitamura N, Uchiyama W, Morita M, Inubushi T, Chujo Y. Preparation for highly sensitive MRI contrast agents using core/shell type nanoparticles consisting of multiple SPIO cores with thin silica coating. Langmuir. 2010;26:11759–62.

    Article  CAS  Google Scholar 

  43. Liu J, Nan Z, Gao S. In situ microcalorimetry study of ZnFe2O4 nanoparticle formation under solvothermal conditions. Dalton Trans. 2015;44:17293–301.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Nature Science Foundations of China (21673204 and 21273196) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaodong Nan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, A., Nan, Z. In situ microcalorimetric investigation on effects of surfactants on cluster-shaped Ni-doped Fe3O4 formation. J Therm Anal Calorim 132, 859–868 (2018). https://doi.org/10.1007/s10973-017-6938-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6938-4

Keywords

Navigation