Skip to main content
Log in

Diffusion pack cementation of hafnium powder with halide activator on Ni–Ti shape memory alloy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effect of a Hf chloride activator on the pack cementation of Hf powder on a Ni–Ti shape memory alloy wire was investigated. For this purpose, a Ni–Ti wire with a diameter of 0.5 mm was pack cemented in a powder mixture consisting of Hf and HfCl4 powders at 1000 °C for 24 h. It was observed that Hf noticeably diffused into the Ni–Ti matrix with the aid of the HfCl4 activator. The diffusion distance significantly increased as the amount of HfCl4 activator increased. By the addition of 10 mass% HfCl4, the martensite-to-austenite phase transformation start and finish temperatures increased from 12 to 142 °C and from 28 to 200 °C, respectively. The diffusion kinetics model was established based on Fick’s first law. It is suggested that 48 h of halide-activated pack cementation with 10 wt% HfCl4 is necessary to increase the overall Hf content above 15 at.% throughout the Ni–Ti wire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Saud SN, Hamzah E, Abubakar T, Bakhsheshi-Rad HR, Hosseinian R. X-phase precipitation in aging of Cu–Al–Ni–xTi shape memory alloys and its influence on phase transition behavior. J Therm Anal Calorim. 2016;123:377–89.

    Article  CAS  Google Scholar 

  2. El-Bagoury N. Comparative study on microstructure and martensitic transformation of aged Ni-rich NiTi and NiTiCo shape memory alloys. Met Mater Int. 2016;22:468–73.

    Article  CAS  Google Scholar 

  3. Kim JH, Kim KM, Yeom JT, Young S. Effect of yttrium on martensite-austenite phase transformation temperatures and high temperature oxidation kinetics of Ti–Ni–Hf high-temperature shape memory alloys. Met Mater Int. 2016;22:204–8. https://doi.org/10.1007/s12540-016-5130-x.

    Article  CAS  Google Scholar 

  4. Choi S-W, Lee H-S, Jeon Y-M, Nam T-H, Yeom J-T, Kim S-W, et al. Effect of chemical composition on the mcrostructure and high-temperature properties of Ti–Ni–Hf high-temperature shape memory alloys. J Korean Inst Met Mater. 2015;53:151–61.

    Article  CAS  Google Scholar 

  5. Young S, Yeom JT, Hong JK, Kim JH. Diffusion pack cementation of Hf powders on Ni–Ti shape memory alloys. Sci Adv Mater. 2016;8:1923–6. https://doi.org/10.1166/sam.2016.2888.

    Article  CAS  Google Scholar 

  6. Antunes AS, Tosetti JPV, Otubo J. High shape recovery Ni–Ti SMA wire produced from electron beam melted ingot. J Alloys Compd. 2013;577:S265–7. https://doi.org/10.1016/j.jallcom.2012.03.043.

    Article  CAS  Google Scholar 

  7. Reyes-Melo ME, Rentería-Baltiérrez FY, López-Walle B, López-Cuellar E, de Araujo CJ. Application of fractional calculus to modeling the dynamic mechanical analysis of a NiTi SMA ribbon. J Therm Anal Calorim. 2016;126:593–9.

    Article  CAS  Google Scholar 

  8. Torra V, Martorell F, Sun QP, Ahadi A, Lovey FC, Sade M. Metastable effects on martensitic transformation in SMAs: part X. An approach to thermodynamic changes induced for the S-shaped cycles in thick wires of NiTi. J Therm Anal Calorim. 2017;128:259–70.

    Article  CAS  Google Scholar 

  9. Suresh KS, Kim D-I, Bhaumik SK, Suwas S. Evolution of microstructure and texture in Ni49.4Ti38.6Hf12 shape memory alloy during hot rolling. Intermetallics. 2013;42:1–8.

    Article  CAS  Google Scholar 

  10. Stebner AP, Bigelow GS, Yang J, Shukla DP, Saghaian SM, Rogers R, et al. Transformation strains and temperatures of a nickel–titanium–hafnium high temperature shape memory alloy. Acta Mater. 2014;76:40–53. https://doi.org/10.1016/j.actamat.2014.04.071.

    Article  CAS  Google Scholar 

  11. Kim DH, Lee YH, Kim JH. Effect of second aging treatment on the microstructure and mechanical properties of SUH660 alloy. Korean J Met Mater. 2016;667:311–6.

    Google Scholar 

  12. Canadinc D, Trehern W, Ozcan H, Hayrettin C, Karakoc O, Karaman I, et al. On the deformation response and cyclic stability of Ni 50 Ti 35 Hf 15 high temperature shape memory alloy wires. Scr Mater. 2017;135:92–6.

    Article  CAS  Google Scholar 

  13. Park JS, Kim JM, Kim HY, Lee JS, Oh IH, Kang CS. Surface protection effect of diffusion pack cementation process by Al–Si powders with chloride activator on magnesium and its alloys. Mater Trans. 2008;49:1048–51.

    Article  CAS  Google Scholar 

  14. Xiang ZD, Datta PK. Conditions for pack codeposition of Al and Hf on nickel-base superalloys. Surf Coatings Technol. 2004;179:95–102.

    Article  CAS  Google Scholar 

  15. Naji A, Galetz MC, Schütze M. Design model for diffusion coatings formed via pack cementation. Mater Corros. 2014;65:312–8. https://doi.org/10.1002/maco.201307393.

    Article  CAS  Google Scholar 

  16. Zarinejad M, Liu Y, Tong Y. Transformation temperature changes due to second phase precipitation in NiTi-based shape memory alloys. Intermetallics. 2009;17:914–9. https://doi.org/10.1016/j.intermet.2009.03.022.

    Article  CAS  Google Scholar 

  17. Belbasi M, Salehi MT, Mousavi SAAA, Ebrahimi SM. A study on the mechanical behavior and microstructure of NiTiHf shape memory alloy under hot deformation. Mater Sci Eng A. 2013;560:96–102. https://doi.org/10.1016/j.msea.2012.09.039.

    Article  CAS  Google Scholar 

  18. Khalil-Allafi J, Amin-Ahmadi B. The effect of chemical composition on enthalpy and entropy changes of martensitic transformations in binary NiTi shape memory alloys. J Alloys Compd. 2009;487:363–6.

    Article  CAS  Google Scholar 

  19. Thoma PE, Boehm JJ. Effect of composition on the amount of second phase and transformation temperatures of NixTi90−x Hf10 shape memory alloys. Mater Sci Eng, A. 1999;275:385–9.

    Article  Google Scholar 

  20. Firstov GS, Van Humbeeck J, Koval YN. High-temperature shape memory alloys some recent developments. Mater Sci Eng A. 2004;378:2–10.

    Article  CAS  Google Scholar 

  21. Tong Y, Chen F, Tian B, Li L, Zheng Y. Microstructure and martensitic transformation of Ti49Ni51–xHfx high temperature shape memory alloys. Mater Lett. 2009;63:1869–71. https://doi.org/10.1016/j.matlet.2009.05.069.

    Article  CAS  Google Scholar 

  22. Rao J, Roberts T, Lawson K, Nicholls J. Nickel titanium and nickel titanium hafnium shape memory alloy thin films. Surf Coatings Technol. 2010;204:2331–6. https://doi.org/10.1016/j.surfcoat.2009.12.025.

    Article  CAS  Google Scholar 

  23. Cheng J, Yi S, Park JS. Simultaneous coating of Si and B on Nb–Si–B alloys by a halide activated pack cementation method and oxidation behaviors of the alloys with coatings at 1100 °C. J Alloys Compd. 2015;644:975–81. https://doi.org/10.1016/j.jallcom.2015.05.003.

    Article  CAS  Google Scholar 

  24. The Materials Project. Reaction Calculator. https://www.materialsproject.org/apps/reaction_calculator/.

  25. Fridman A. Plasma chemistry. New York: Cambridge University Press; 2008.

    Book  Google Scholar 

  26. Pérez RA, Dyment F, Bermúdez GG, Somacal H, Abriola D. Measurements of Hf diffusion in α-Ti by HIRBS. J Nucl Mater. 1993;207:221–7.

    Article  Google Scholar 

  27. Shuwei MA, Yunrong Z. Diffusion behaviour of hafnium in Ni and Ni3Al. J Mater Sci Lett. 1997;6:1761–3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeoung Han Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 201 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S.Y., Kwon, Y., Choi, SW. et al. Diffusion pack cementation of hafnium powder with halide activator on Ni–Ti shape memory alloy. J Therm Anal Calorim 133, 5–12 (2018). https://doi.org/10.1007/s10973-017-6931-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6931-y

Keywords

Navigation