Advertisement

Diffusion pack cementation of hafnium powder with halide activator on Ni–Ti shape memory alloy

  • Seung Yong Yang
  • YeounJu Kwon
  • Seong-Woo Choi
  • Jeoung Han Kim
Article
  • 45 Downloads

Abstract

The effect of a Hf chloride activator on the pack cementation of Hf powder on a Ni–Ti shape memory alloy wire was investigated. For this purpose, a Ni–Ti wire with a diameter of 0.5 mm was pack cemented in a powder mixture consisting of Hf and HfCl4 powders at 1000 °C for 24 h. It was observed that Hf noticeably diffused into the Ni–Ti matrix with the aid of the HfCl4 activator. The diffusion distance significantly increased as the amount of HfCl4 activator increased. By the addition of 10 mass% HfCl4, the martensite-to-austenite phase transformation start and finish temperatures increased from 12 to 142 °C and from 28 to 200 °C, respectively. The diffusion kinetics model was established based on Fick’s first law. It is suggested that 48 h of halide-activated pack cementation with 10 wt% HfCl4 is necessary to increase the overall Hf content above 15 at.% throughout the Ni–Ti wire.

Keywords

Shape memory alloy Ni–Ti Pack cementation Diffusion Hafnium 

Supplementary material

10973_2017_6931_MOESM1_ESM.pptx (202 kb)
Supplementary material 1 (PPTX 201 kb)

References

  1. 1.
    Saud SN, Hamzah E, Abubakar T, Bakhsheshi-Rad HR, Hosseinian R. X-phase precipitation in aging of Cu–Al–Ni–xTi shape memory alloys and its influence on phase transition behavior. J Therm Anal Calorim. 2016;123:377–89.CrossRefGoogle Scholar
  2. 2.
    El-Bagoury N. Comparative study on microstructure and martensitic transformation of aged Ni-rich NiTi and NiTiCo shape memory alloys. Met Mater Int. 2016;22:468–73.CrossRefGoogle Scholar
  3. 3.
    Kim JH, Kim KM, Yeom JT, Young S. Effect of yttrium on martensite-austenite phase transformation temperatures and high temperature oxidation kinetics of Ti–Ni–Hf high-temperature shape memory alloys. Met Mater Int. 2016;22:204–8.  https://doi.org/10.1007/s12540-016-5130-x.CrossRefGoogle Scholar
  4. 4.
    Choi S-W, Lee H-S, Jeon Y-M, Nam T-H, Yeom J-T, Kim S-W, et al. Effect of chemical composition on the mcrostructure and high-temperature properties of Ti–Ni–Hf high-temperature shape memory alloys. J Korean Inst Met Mater. 2015;53:151–61.CrossRefGoogle Scholar
  5. 5.
    Young S, Yeom JT, Hong JK, Kim JH. Diffusion pack cementation of Hf powders on Ni–Ti shape memory alloys. Sci Adv Mater. 2016;8:1923–6.  https://doi.org/10.1166/sam.2016.2888.CrossRefGoogle Scholar
  6. 6.
    Antunes AS, Tosetti JPV, Otubo J. High shape recovery Ni–Ti SMA wire produced from electron beam melted ingot. J Alloys Compd. 2013;577:S265–7.  https://doi.org/10.1016/j.jallcom.2012.03.043.CrossRefGoogle Scholar
  7. 7.
    Reyes-Melo ME, Rentería-Baltiérrez FY, López-Walle B, López-Cuellar E, de Araujo CJ. Application of fractional calculus to modeling the dynamic mechanical analysis of a NiTi SMA ribbon. J Therm Anal Calorim. 2016;126:593–9.CrossRefGoogle Scholar
  8. 8.
    Torra V, Martorell F, Sun QP, Ahadi A, Lovey FC, Sade M. Metastable effects on martensitic transformation in SMAs: part X. An approach to thermodynamic changes induced for the S-shaped cycles in thick wires of NiTi. J Therm Anal Calorim. 2017;128:259–70.CrossRefGoogle Scholar
  9. 9.
    Suresh KS, Kim D-I, Bhaumik SK, Suwas S. Evolution of microstructure and texture in Ni49.4Ti38.6Hf12 shape memory alloy during hot rolling. Intermetallics. 2013;42:1–8.CrossRefGoogle Scholar
  10. 10.
    Stebner AP, Bigelow GS, Yang J, Shukla DP, Saghaian SM, Rogers R, et al. Transformation strains and temperatures of a nickel–titanium–hafnium high temperature shape memory alloy. Acta Mater. 2014;76:40–53.  https://doi.org/10.1016/j.actamat.2014.04.071.CrossRefGoogle Scholar
  11. 11.
    Kim DH, Lee YH, Kim JH. Effect of second aging treatment on the microstructure and mechanical properties of SUH660 alloy. Korean J Met Mater. 2016;667:311–6.Google Scholar
  12. 12.
    Canadinc D, Trehern W, Ozcan H, Hayrettin C, Karakoc O, Karaman I, et al. On the deformation response and cyclic stability of Ni 50 Ti 35 Hf 15 high temperature shape memory alloy wires. Scr Mater. 2017;135:92–6.CrossRefGoogle Scholar
  13. 13.
    Park JS, Kim JM, Kim HY, Lee JS, Oh IH, Kang CS. Surface protection effect of diffusion pack cementation process by Al–Si powders with chloride activator on magnesium and its alloys. Mater Trans. 2008;49:1048–51.CrossRefGoogle Scholar
  14. 14.
    Xiang ZD, Datta PK. Conditions for pack codeposition of Al and Hf on nickel-base superalloys. Surf Coatings Technol. 2004;179:95–102.CrossRefGoogle Scholar
  15. 15.
    Naji A, Galetz MC, Schütze M. Design model for diffusion coatings formed via pack cementation. Mater Corros. 2014;65:312–8.  https://doi.org/10.1002/maco.201307393.CrossRefGoogle Scholar
  16. 16.
    Zarinejad M, Liu Y, Tong Y. Transformation temperature changes due to second phase precipitation in NiTi-based shape memory alloys. Intermetallics. 2009;17:914–9.  https://doi.org/10.1016/j.intermet.2009.03.022.CrossRefGoogle Scholar
  17. 17.
    Belbasi M, Salehi MT, Mousavi SAAA, Ebrahimi SM. A study on the mechanical behavior and microstructure of NiTiHf shape memory alloy under hot deformation. Mater Sci Eng A. 2013;560:96–102.  https://doi.org/10.1016/j.msea.2012.09.039.CrossRefGoogle Scholar
  18. 18.
    Khalil-Allafi J, Amin-Ahmadi B. The effect of chemical composition on enthalpy and entropy changes of martensitic transformations in binary NiTi shape memory alloys. J Alloys Compd. 2009;487:363–6.CrossRefGoogle Scholar
  19. 19.
    Thoma PE, Boehm JJ. Effect of composition on the amount of second phase and transformation temperatures of NixTi90−x Hf10 shape memory alloys. Mater Sci Eng, A. 1999;275:385–9.CrossRefGoogle Scholar
  20. 20.
    Firstov GS, Van Humbeeck J, Koval YN. High-temperature shape memory alloys some recent developments. Mater Sci Eng A. 2004;378:2–10.CrossRefGoogle Scholar
  21. 21.
    Tong Y, Chen F, Tian B, Li L, Zheng Y. Microstructure and martensitic transformation of Ti49Ni51–xHfx high temperature shape memory alloys. Mater Lett. 2009;63:1869–71.  https://doi.org/10.1016/j.matlet.2009.05.069.CrossRefGoogle Scholar
  22. 22.
    Rao J, Roberts T, Lawson K, Nicholls J. Nickel titanium and nickel titanium hafnium shape memory alloy thin films. Surf Coatings Technol. 2010;204:2331–6.  https://doi.org/10.1016/j.surfcoat.2009.12.025.CrossRefGoogle Scholar
  23. 23.
    Cheng J, Yi S, Park JS. Simultaneous coating of Si and B on Nb–Si–B alloys by a halide activated pack cementation method and oxidation behaviors of the alloys with coatings at 1100 °C. J Alloys Compd. 2015;644:975–81.  https://doi.org/10.1016/j.jallcom.2015.05.003.CrossRefGoogle Scholar
  24. 24.
    The Materials Project. Reaction Calculator. https://www.materialsproject.org/apps/reaction_calculator/.
  25. 25.
    Fridman A. Plasma chemistry. New York: Cambridge University Press; 2008.CrossRefGoogle Scholar
  26. 26.
    Pérez RA, Dyment F, Bermúdez GG, Somacal H, Abriola D. Measurements of Hf diffusion in α-Ti by HIRBS. J Nucl Mater. 1993;207:221–7.CrossRefGoogle Scholar
  27. 27.
    Shuwei MA, Yunrong Z. Diffusion behaviour of hafnium in Ni and Ni3Al. J Mater Sci Lett. 1997;6:1761–3.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Seung Yong Yang
    • 1
  • YeounJu Kwon
    • 2
  • Seong-Woo Choi
    • 3
  • Jeoung Han Kim
    • 2
  1. 1.School of Mechanical EngineeringKorea University of Technology and EducationChonanKorea
  2. 2.Department of Materials Science and EngineeringHanbat National UniversityDaejeonSouth Korea
  3. 3.Titanium DepartmentKorea Institute of Materials ScienceChangwonSouth Korea

Personalised recommendations