Skip to main content
Log in

Heat capacity measurements on Ba1.5Fe2(PO4)3 and its thermodynamic functions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The temperature dependence of molar heat capacity of Ba1.5Fe2(PO4)3 phosphate was investigated between T = 6 and 670 K with precision adiabatic vacuum and differential scanning calorimetry. The anomaly was observed in the heat capacity curve, and its character was explained by magnetic disorder–order phase transition at T below 6 K. The standard thermodynamic functions \(C_{{{\text{p}} \cdot {\text{m}}}}^{{\text o}}\), \([H_{\text{m}}^{{\text o}} \left( T \right) - H_{\text{m}}^{{\text o}} \left( 6 \right)]\), \(\left[ {S_{\text{m}}^{{\text o}} \left( T \right) - S_{\text{m}}^{{\text o}} \left( 6 \right)} \right]\) and \(\Phi _{\text{m}}^{{\text o}}\) of Ba1.5Fe2(PO4)3 were calculated within the range T → 6–670 K. The low-temperature heat capacity analysis, based on the Debye theory and multifractal model, reveals framework structural topology of the studied phosphate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jiao M, Lv W, Lu W, Zhao Q, Shao B, You H. Optical properties and energy transfer of a novel KSrSc2(PO4)3:Ce3+/Eu2+/Tb3+ phosphor for white light emitting diodes. Dalton Trans. 2015;44:4080–7.

    Article  CAS  Google Scholar 

  2. Slobodyanik NS, Terebilenko KV, Ogorodnyk IV, Zatovsky IV, Seredyuk M, Baumer VN, Gütlich P. K2M III2 (MVIO4)(PO4)2 (MIII = Fe. Sc; MVI = Mo. W), novel members of the lagbeinite-related family: synthesis, structure, and magnetic properties. Inorg Chem. 2012;51:1380–5.

    Article  CAS  Google Scholar 

  3. Guelylah A, Madariaga G, Morgenroth W, Aroyo MI, Breczewski T, Bocanegra EH. X-ray structure determination of the monoclinic (121 K) and orthorhombic (85 K) phases of -langbeinite-type dithallium dicadmium sulfate. Acta Cryst. 2000;B56:921–35.

    Article  CAS  Google Scholar 

  4. Pet’kov VI, Asabina EA, Sukhanov MV, Schelokov IA, Shipilov AS, Alekseev AA. Design and characterization of phosphate-containing ceramics with kosnarite- and langbeinite-type structures for industrial applications. Chem Eng Trans. 2015;43:1825–30.

    Google Scholar 

  5. Zaripov AR, Orlova VA, Pet’kov VI, Slyunchev OM, Galuzin DD, Rovnyi SI. Synthesis and study of the phosphate Cs2Mn0.5Zr1.5(PO4)3. Russ J Inorg Chem. 2009;54:45–51.

    Article  Google Scholar 

  6. Norberg ST. New phosphate langbeinites, K2 MTi(PO4)3 (M = Er, Yb or Y), and an alternative description of the langbeinite framework. Acta Cryst. 2002;B58:743–9.

    Article  CAS  Google Scholar 

  7. Zatovskii IV, Slobodyanik NS, Ushchapivskaya TI, Ogorodnik IV, Babarik AA. Synthesis of complex phosphates with a langbeinite structure from melts. Russ J Appl Chem. 2006;79:10–5.

    Article  CAS  Google Scholar 

  8. Asabina EA, Pet’kov VI, Gobechiya ER, Kabalov YK, Pokholok KV, Kurazhkovskaya VS. Synthesis and crystal structure of phosphates A2FeTi(PO4)3 (A = Na, Rb). Rus. J Inorg Chem. 2008;53:40–7.

    Google Scholar 

  9. Hidouri M, López ML, Pico C, Wattiaux A, Amara MB. Synthesis and characterization of a new iron phosphate KSrFe2(PO4)3 with a langbeinite type structure. J Mol Struct. 2012;1030:145–8.

    Article  CAS  Google Scholar 

  10. Zhang Z-J, Lin X, Zhao J-T, Zhang G-B. Preparation and spectroscopic properties of rare-earth (RE) (RE = Sm, Eu, Tb, Dy, Tm)-activated K2LnZr(PO4)3 (Ln = Y, La, Gd and Lu) phosphate in vacuum ultraviolet region. Mater Res Bull. 2013;48:224–31.

    Article  CAS  Google Scholar 

  11. Pet’kov VI, Asabina EA, Lukuttsov AA, Korchemkin IV, Alekseev AA, Demarin VT. Immobilization of cesium into mineral-like matrices of tridymite, kosnarite, and langbeinite structure. Radiochemistry. 2015;57:632–9.

    Article  Google Scholar 

  12. Kumar SP, Gopal B. New rare earth langbeinite phosphosilicates KBaREEZrP2SiO12 (REE: La, Nd, Sm, Eu, Gd, Dy) for lanthanide comprising nuclear waste storage. J Alloys Compd. 2016;657:422–9.

    Article  CAS  Google Scholar 

  13. Pet’kov VI, Shipilov AS, Dmitrienko AS, Alekseev AA. Characterization and controlling thermal expansion of materials with kosnarite- and langbeinite-type structures. J Ind Eng Chem. 2018;57:236–43.

    Article  Google Scholar 

  14. Szumera M, Wacławska I, Sułowska J. Thermal properties of MnO2 and SiO2 containing phosphate glasses. J Therm Anal Cal. 2016;123:1083–9.

    Article  CAS  Google Scholar 

  15. Holubová J, Černošek Z, Černošková E, Beneš L. Thermal properties and structure of zinc–manganese metaphosphate glasses. J Therm Anal Cal. 2015;122:47–53.

    Article  Google Scholar 

  16. Ciecińska M, Stoch P, Stoch A, Nocuń M. Thermal properties of 60P2O5–20Fe2O3–20Al2O3 glass for salt waste immobilization. J Therm Anal Cal. 2015;121:1225–32.

    Article  Google Scholar 

  17. Stoch P, Ciecinska M, Stoch A. Thermal properties of phosphate glasses for salt waste immobilization. J Therm Anal Cal. 2014;117:197–204.

    Article  CAS  Google Scholar 

  18. Pet’kov VI, Shipilov AS, Markin AV, Smirnova NN. Thermodynamic properties of crystalline magnesium zirconium phosphate. J Therm Anal Cal. 2014;115:1453–63.

    Article  Google Scholar 

  19. Sukhanov MV, Schelokov IA, Pet’kov VI, Gobechiya ER, Kabalov YK, Markin AV, Smirnova NN. Synthesis, structure and thermophysical properties of phosphates MNi0.5Zr1.5(PO4)3 (M = Mg, Ca, Sr). Eur Chem Technol J. 2010;12:241–5.

    Article  CAS  Google Scholar 

  20. Pet’kov VI, Shchelokov IA, Markin AV, Smirnova NN, Sukhanov MV. Thermodynamic properties of crystalline phosphate Ba0.5Zr2(PO4)3 over the temperature range from T→0 to 610 K. J Therm Anal Cal. 2010;102:1147–54.

    Article  Google Scholar 

  21. Pet’kov VI, Asabina EA, Markin AV, Smirnova NN. Heat capacity and standard thermodynamic functions of NaTi2(PO4)3 and NaHf2(PO4)3. J Chem Eng Data. 2010;55:856–63.

    Article  Google Scholar 

  22. Pet’kov VI, Asabina EA, Markin AV, Smirnova NN. Synthesis, characterization and thermodynamic data of compounds with NZP structure. J Therm Anal Cal. 2008;91(1):155–61.

    Article  Google Scholar 

  23. Pet’kov VI, Asabina EA, Markin AV, Alekseev AA, Smirnova NN. Thermodynamic investigation of Rb2FeTi(PO4)3 phosphate of langbeinite structure. J Therm Anal Cal. 2016;124:1535–44.

    Article  Google Scholar 

  24. Battle PD, Cheetham AK, Harrison WTA, Long GJ. The crystal structure and magnetic properties of the synthetic langbeinite KBaFe2(PO4)3. J Solid State Chem. 1986;62:16–25.

    Article  CAS  Google Scholar 

  25. Battle PD, Gibb TC, Nixon S, Harrison WTA. The magnetic properties of the synthetic langbeinite KBaCr2(PO4)3. J Solid State Chem. 1988;75:21–9.

    Article  CAS  Google Scholar 

  26. Chemical reagents and high-pure chemicals. Catalog. Moscow: Khimia; 1990. (in Russian).

  27. Pet’kov VI, Shchelokov IA, Surazhskaya MD, Palkina KK, Kanishcheva AS, Knyazev AV. Synthesis and crystal structure of phosphate Ba1.5Fe2(PO4)3. Russ J Inorg Chem. 2010;55:1352–5.

    Article  Google Scholar 

  28. Blokhin AV, Paulechka YU, Kabo GJ. Thermodynamic properties of [C6mim][NTf2] in the condensed state. J Chem Eng Data. 2006;51:1377–88.

    Article  CAS  Google Scholar 

  29. Varushchenko RM, Druzhinina AI, Sorkin EL. Low-temperature heat capacity of l-bromoperfluorooctane. J Chem Thermodyn. 1997;29:623–37.

    Article  CAS  Google Scholar 

  30. Hohne GWH, Hemminger WF, Flammersheim HF. Differential scanning calorimetry. Berlin: Springer; 2003.

    Book  Google Scholar 

  31. Drebushchak VA. Calibration coefficient of heat-flow DSC. Part II. Optimal calibration procedure. J Therm Anal Calorim. 2005;79:213–8.

    Article  CAS  Google Scholar 

  32. Markin AV, Sankovich AM, Smirnova NN, Zvereva IA. Heat capacity and standard thermodynamic functions of NaGdTiO4 and Na2Gd2Ti3O10 over the range from (6 to 630) K. J Chem Eng Data. 2015;60:3069–76.

    Article  CAS  Google Scholar 

  33. Westrum EF. Lattice and Schottky contributions to the morphology of lanthanide heat capacities. J Chem Thermodyn. 1983;15:305–25.

    Article  CAS  Google Scholar 

  34. Cracknell AP, Tooke AO. The specific heats of magnetically ordered materials. Contemp Phys. 1979;20:55–82.

    Article  CAS  Google Scholar 

  35. Izotov AD, Shebershnyova OV, Gavrichev KS. Third all-union conference on thermal analysis and calorimetry, Kazan; 1996.

  36. Lazarev VB, Izotov AD, Gavrichev KS, Shebershneva OV. Fractal model of heat capacity for substances with diamond-like structures. Thermochim Acta. 1995;269(270):109–16.

    Article  Google Scholar 

  37. Lebedev BV. Application of precise calorimetry in study of polymers and polymerization processes. Thermochim Acta. 1997;297:143–9.

    Article  CAS  Google Scholar 

  38. McCullough JP, Scott DW. Calorimetry of non-reacting systems. London: Butterworth; 1968.

    Google Scholar 

Download references

Acknowledgements

The present work was performed at the Lobachevsky State University of Nizhni Novgorod with the financial support of the Russian Foundation for Basic Research and the Goverment of Nizhny Novgorod Region of the Russian Federation (Project No. 18-43-520004) and the Ministry of Education and Science of the Russian Federation (Project No. 4.8337.2017/BCh).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Pet’kov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pet’kov, V.I., Markin, A.V., Alekseev, A.A. et al. Heat capacity measurements on Ba1.5Fe2(PO4)3 and its thermodynamic functions. J Therm Anal Calorim 132, 353–364 (2018). https://doi.org/10.1007/s10973-017-6925-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6925-9

Keywords

Navigation