Journal of Thermal Analysis and Calorimetry

, Volume 133, Issue 1, pp 443–452 | Cite as

Synthesis and characterization of diazine-ring containing hydrazones and their Zn(II) complexes

  • József Magyari
  • Berta Barta Holló
  • Marko V. Rodić
  • Imre Miklós Szilágyi
  • Katalin Mészáros Szécsényi


Two new zinc(II) coordination compounds have been synthesized by the reaction of diazine-ring containing Schiff bases di(2-pyridyl) ketone phthalazine-1-hydrazone (HzDPK) and di(2-pyridyl) ketone 3-chloropyridazine-6-hydrazone (HpDPK) with zinc(II) salts in acetonitrile in the presence of triethylamine. The crystal and molecular structures of the complexes and that of the ligand HpDPK were determined by single-crystal X-ray structure analysis. In both complexes, zinc atoms are situated in distorted octahedral environments, formed by two meridionally coordinated NNN tridentate, mono-deprotonated ligands. Since the applicability of the coordination compounds depends on their thermal properties, the thermal decomposition of the ligands and their complexes was followed by simultaneous TG–DSC measurements. The desolvation process of the complexes is rather slow as a consequence of a restricted diffusion through the lattice and finishes ~ 200 °C. The desolvated compounds are stable up to 340 °C. In order to follow the solvent evaporation and to have a better insight into the decomposition mechanism of the compounds coupled TG–MS measurements were carried out.


Hydrazinophthalazine Hydralazine Pyridazine Dipyridyl ketone Schiff base Zinc complexes 



This research was supported by Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. 172014). József Magyari gratefully acknowledges Hungarian Academy of Sciences (MTA) Domus Hungarica Grant for the research support. I. M. Szilágyi thanks for a János Bolyai Research Fellowship of the Hungarian Academy of Sciences and an ÚNKP-17-4-IV-BME-188 grant supported by the ÚNKP-17-4-IV New National Excellence Program of the Ministry of Human Capacities, Hungary. An NRDI PD-109129 grant and a K 124212 grant are acknowledged. A Montenegro-Hungary Bilateral Science and Technology Research Grant (TÉT_15-1-2016-0036) is acknowledged. The research within project No. VEKOP-2.3.2-16-2017-00013 was supported by the European Union and the State of Hungary, co-financed by the European Regional Development Fund.

Supplementary material

10973_2017_6908_MOESM1_ESM.pdf (425 kb)
Supplementary material 1 (PDF 426 kb)


  1. 1.
    Housman G, Byler S, Heerboth S, et al. Drug resistance in cancer: an overview. Cancers. 2014;6:1769–92.CrossRefGoogle Scholar
  2. 2.
    Zilahi G, Artigas A, Martin-Loeches I. What’s new in multidrug-resistant pathogens in the ICU? Ann Intensive Care. 2016;6:96–106.CrossRefGoogle Scholar
  3. 3.
    Locher KP. Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat Struct Mol Biol. 2016;23:487–93.CrossRefGoogle Scholar
  4. 4.
    Kumar J, Rai A, Raj V. A comprehensive review on the pharmacological activity of schiff base containing derivatives. Org Med Chem J. 2017;1:555–64.Google Scholar
  5. 5.
    Popiołek Ł. Hydrazide-hydrazones as potential antimicrobial agents: overview of the literature since 2010. Med Chem Res. 2017;26:287–301.CrossRefGoogle Scholar
  6. 6.
    Verma G, Marella A, Shaquiquzzaman M, Akhtar M, Ali MR, Alam MM. A review exploring biological activities of hydrazones. J Pharm Bioallied Sci. 2014;6:69–80.CrossRefGoogle Scholar
  7. 7.
    Azab ME, Rizk SA, Mahmoud NF. Facile synthesis, characterization, and antimicrobial evaluation of novel heterocycles, schiff bases, and N-nucleosides bearing phthalazine moiety. Chem Pharm Bull. 2016;64:439–50.CrossRefGoogle Scholar
  8. 8.
    Cohn JN, McInnes GT, Shepherd AM. Direct-acting vasodilators. J Clin Hypertens. 2011;13:690–2.CrossRefGoogle Scholar
  9. 9.
    Nelson M-AM, Baba SP, Anderson EJ. Biogenic aldehydes as therapeutic targets for cardiovascular disease. Curr Opin Pharmacol. 2017;33:56–63.CrossRefGoogle Scholar
  10. 10.
    Al-Falahi H, May PM, Roe AM, Slater RA, Trott WJ, Williams DR. Metal binding by pharmaceuticals. Part 4. A comparative investigation of the interaction of metal ions with hydralazine, prizidilol and related compounds. Agents Actions. 1984;14:113–20.CrossRefGoogle Scholar
  11. 11.
    Abu-Dief AM, Mohamed IMA. A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni-Suef Univ J Basic Appl Sci. 2015;4:119–33.CrossRefGoogle Scholar
  12. 12.
    Barta Holló B, Magyari J, Armaković S, Bogdanović GA, Rodić MV, Armaković SJ, et al. Coordination compounds of a hydrazone derivative with Co(III), Ni(II), Cu(II) and Zn(II): synthesis, characterization, reactivity assessment and biological evaluation. New J Chem. 2016;40:5885–95.CrossRefGoogle Scholar
  13. 13.
    Rigaku Oxford Diffraction. CrysAlisPro Software system, version Rigaku Corporation, Oxford, UK; 2015.Google Scholar
  14. 14.
    Sheldrick GM. SHELXT—integrated space-group and crystal-structure determination. Acta Crystallogr Sect A Found Adv. 2015;71:3–8.CrossRefGoogle Scholar
  15. 15.
    Sheldrick GM. Crystal structure refinement with SHELXL. Acta Crystallogr Sect C Struct Chem. 2015;71:3–8.CrossRefGoogle Scholar
  16. 16.
    Hübschle CB, Sheldrick GM, Dittrich B. ShelXle: a Qt graphical user interface for SHELXL. J Appl Crystallogr. 2011;44:1281–4.CrossRefGoogle Scholar
  17. 17.
    Groom CR, Bruno IJ, Lightfoot MP, Ward SC. The Cambridge structural database. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater. 2016;72:171–9.CrossRefGoogle Scholar
  18. 18.
    Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, et al. Mercury CSD 2.0—new features for the visualization and investigation of crystal structures. J Appl Crystallogr. 2008;41:466–70.CrossRefGoogle Scholar
  19. 19.
    Farrugia LJ. WinGX and ORTEP for Windows: an update. J Appl Crystallogr. 2012;45:849–54.CrossRefGoogle Scholar
  20. 20.
    Okabe N, Fukuda H, Nakamura T. Structure of hydralazine hydrochloride. Acta Crystallogr C Cryst Struct Commun. 1993;49:1844–5.CrossRefGoogle Scholar
  21. 21.
    Bakir M, Conry RR, Green O. Polymorphic di-2-pyridyl ketone 4-nitrophenylhydrazone (dpknph): the structure of [beta]-dpknph. Acta Crystallogr Sect C Cryst Struct Commun. 2005;61:607–9.CrossRefGoogle Scholar
  22. 22.
    Bakir M, Green O. Di-2-pyridyl ketone p-aminobenzoyl-hydrazone hydrate. Acta Crystallogr Sect C Cryst Struct Commun. 2002;58:263–5.CrossRefGoogle Scholar
  23. 23.
    Swearingen JK, Kaminsky W, West DX. Structural and spectral studies of di-2-pyridyl ketone 3-piperidyl- and 3-hexamethyleneiminylthiosemicarbazone and their cobalt(II), nickel(II) and copper(II) complexes. Transit Met Chem. 2002;27:724–31.CrossRefGoogle Scholar
  24. 24.
    Deng W-T, Liu J-C, Cao J. Syntheses, crystal structures and properties of four new coordination polymers involving a schiff base ligand bearing an easily abstracted proton in the hydrazone backbone. Inorg Chem Commun. 2013;35:315–7.CrossRefGoogle Scholar
  25. 25.
    Grünwald KR, Volpe M, Cias P, Gescheidt G, Mösch-Zanetti NC. Pyridazine-versus pyridine-based tridentate ligands in first-row transition metal complexes. Inorg Chem. 2011;50:7478–88.CrossRefGoogle Scholar
  26. 26.
    Goldberg AE, Kiskin MA, Popov LD, Levchenkov SI, Shcherbakov IN, Tupolova YP, Kogan VA. Crystal structure of a trinuclear complex of zinc(II) with 2,6-Di-tert-butyl-p-quinone 1′-phthalazinylhydrazone. J Struct Chem. 2014;55:475–80.CrossRefGoogle Scholar
  27. 27.
    Di Foggia M, Bonora S, Tinti A, Tugnoli V. DSC and Raman study of DMPC liposomes in presence of Ibuprofen at different pH. J Therm Anal Calorim. 2017;127:1407–17.CrossRefGoogle Scholar
  28. 28.
    Li C-H, Jiang Y, Jiang J-H, Li X, Xiao S-X, Tao L-M, et al. Standard molar enthalpy of formation of [(C12H8N2)2Bi(O2NO)3] and its biological activity on Schizosaccharomyces pombe. J Therm Anal Calorim. 2017;128:1743–51.CrossRefGoogle Scholar
  29. 29.
    Saad FA, Elghalban MG, Al-Fahemi JH, Yarkandy N, El-Metwaly NM, Abou-Melha KS, et al. Simulative aurintricarboxylic acid molecular docking with antitumor activity for its VO(II), Cr(III), Mn(II) and Fe(III) complexes, HF/DFT modeling and elaborated EPR studies. J Therm Anal Calorim. 2017;128:1565–78.CrossRefGoogle Scholar
  30. 30.
    Srivastva U, Malhotra RK, Kaushik SC. Review of heat transport properties of solar heat transfer fluids. J Therm Anal Calorim. 2017;130:605–21.CrossRefGoogle Scholar
  31. 31.
    Krisyuk VV, Sysoev SV, Turgambaeva AE, Nazarova AA, Koretskaya TP, Igumenov IK, Morozova NB. Thermal behavior of methoxy-substituted Pd and Cu β-diketonates and their heterobimetallic complex. J Therm Anal Calorim. 2017;130:1105–10.CrossRefGoogle Scholar
  32. 32.
    Abd El-Halim HF, Omar MM, Anwar MN. Preparation, characterization, antimicrobial and anticancer activities of Schiff base mixed ligand complexes. J Therm Anal Calorim. 2017;130:1069–83.CrossRefGoogle Scholar
  33. 33.
    Begović NN, Vasić MM, Blagojević VA, Filipović NR, Marinković AD, Malešević A, Minić DM. Synthesis and thermal stability of cis-dichloro[(E)-ethyl-2-(2-((8-hydroxyquinolin-2-il)methylene)hidrazinyl)acetate-κ2 N]-palladium(II) complex. J Therm Anal Calorim. 2017;130:701–11.CrossRefGoogle Scholar
  34. 34.
    Jaćimović ŽK, Giester G, Kosović M, Bogdanović GA, Novaković SB, Leovac VM, Latinović N, Barta Holló B, Szécsényi M. Solvent exchange reactions in coordination compounds. J Therm Anal Calorim. 2017;127:1501–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Department of Chemistry, Biochemistry and Environmental Protection, Faculty of SciencesUniversity of Novi SadNovi SadSerbia
  2. 2.Department of Inorganic and Analytical ChemistryBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations