Skip to main content

Synergistic flame-retardant behavior and mechanism of tris(3-nitrophenyl) phosphine and DOPO in epoxy resins


A novel flame-retarded epoxy resins system is prepared by copolymerizing diglycidyl ether of bisphenol A (EP) with tris(3-nitrophenyl) phosphine (NPPh3), 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO), and 4,4-diaminodiphenylmethane (DDM). The thermogravimetric curves suggest that there is an obvious synergistic effect between NPPh3 and DOPO. Flame-retardant properties of the cured products are evaluated using limited oxygen index (LOI) and vertical burning tests (UL-94). The results indicate that the flame retardancy of NPPh3/DOPO/EP thermosets is enhanced. 2%NPPh3/4%DOPO/EP achieves a LOI value of 33.8% and V-0 rating in UL-94 test. The thermal stability of the EP composites is detected by thermogravimetric analysis (TG) and differential scanning calorimetry. The results demonstrate that the thermal stability of NPPh3/DOPO cured epoxy resins displays an improvement in the high-temperature region and the glass transition temperature decreases slightly compared with pure EP. The pyrolytic gases are characterized using thermogravimetric analysis/infrared spectrometry (TG-FTIR) in an air atmosphere. The gaseous species produced by the flame-retarded EP composites are the same as those from EP. Additionally, the morphology and the structure of char residues are studied by scanning electron microscopy and Fourier transform infrared spectra (FTIR). The morphology of the residual char for flame-retarded EP composites shows a compact, smooth, and tight structure. These outstanding integrated properties will make EP composites attractive for practical applications.

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Xiao L, Sun D, Niu T, Yao Y. Syntheses and characterization of two novel 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-based flame retardants for epoxy resin. High Perform Polym. 2014;26(1):52–9.

    CAS  Article  Google Scholar 

  2. 2.

    Xu M-J, Xu G-R, Leng Y, Li B. Synthesis of a novel flame retardant based on cyclotriphosphazene and DOPO groups and its application in epoxy resins. Polym Degrad Stab. 2016;123:105–14.

    CAS  Article  Google Scholar 

  3. 3.

    Tan Y, Shao Z-B, Yu L-X, Xu Y-J, Rao W-H, Chen L, Wang Y-Z. Polyethyleneimine modified ammonium polyphosphate toward polyamine-hardener for epoxy resin: thermal stability, flame retardance and smoke suppression. Polym Degrad Stab. 2016;131:62–70.

    CAS  Article  Google Scholar 

  4. 4.

    Huo S, Wang J, Yang S, Wang J, Zhang B, Zhang B, Chen X, Tang Y. Synthesis of a novel phosphorus-nitrogen type flame retardant composed of maleimide, triazine-trione, and phosphaphenanthrene and its flame retardant effect on epoxy resin. Polym Degrad Stab. 2016;131:106–13.

    CAS  Article  Google Scholar 

  5. 5.

    Liu S, Fang Z, Yan H, Chevali VS, Wang H. Synergistic flame retardancy effect of graphene nanosheets and traditional retardants on epoxy resin. Compos A Appl Sci Manuf. 2016;89:26–32.

    CAS  Article  Google Scholar 

  6. 6.

    Fang Y, Zhou X, Xing Z, Wu Y. Flame retardant performance of a carbon source containing DOPO derivative in PET and epoxy. J Appl Polym Sci. 2017;134:12.

    Google Scholar 

  7. 7.

    Zhang T, Liu W, Wang M, Liu P, Pan Y, Liu D. Synergistic effect of an aromatic boronic acid derivative and magnesium hydroxide on the flame retardancy of epoxy resin. Polym Degrad Stab. 2016;130:257–63.

    CAS  Article  Google Scholar 

  8. 8.

    Müller P, Schartel B. Melamine poly(metal phosphates) as flame retardant in epoxy resin: performance, modes of action, and synergy. J Appl Polym Sci. 2016;133(24).

  9. 9.

    Zhang W, Li X, Yang R. Novel flame retardancy effects of DOPO-POSS on epoxy resins. Polym Degrad Stab. 2011;96(12):2167–73.

    CAS  Article  Google Scholar 

  10. 10.

    Ciesielski M, Schäfer A, Döring M. Novel efficient DOPO-based flame-retardants for PWB relevant epoxy resins with high glass transition temperatures. Polym Adv Technol. 2008;19(6):507–15.

    CAS  Article  Google Scholar 

  11. 11.

    Wang X, Hu Y, Song L, Yang H, Xing W, Lu H. Synthesis and characterization of a DOPO-substitued organophosphorus oligomer and its application in flame retardant epoxy resins. Prog Org Coat. 2011;71(1):72–82.

    CAS  Article  Google Scholar 

  12. 12.

    Yang S, Wang J, Huo S, Cheng L, Wang M. The synergistic effect of maleimide and phosphaphenanthrene groups on a reactive flame-retarded epoxy resin system. Polym Degrad Stab. 2015;115:63–9.

    Article  Google Scholar 

  13. 13.

    Zhang L, Wang Y, Liu Q, Cai X. Synergistic effects between silicon-containing flame retardant and DOPO on flame retardancy of epoxy resins. J Therm Anal Calorim. 2015;123(2):1343–50.

    Article  Google Scholar 

  14. 14.

    Zhang W, He X, Song T, Jiao Q, Yang R. The influence of the phosphorus-based flame retardant on the flame retardancy of the epoxy resins. Polym Degrad Stab. 2014;109:209–17.

    CAS  Article  Google Scholar 

  15. 15.

    Chen X, Gu A, Liang G, Yuan L, Zhuo D, Hu J-T. Novel low phosphorus-content bismaleimide resin system with outstanding flame retardancy and low dielectric loss. Polym Degrad Stab. 2012;97(5):698–706.

    CAS  Article  Google Scholar 

  16. 16.

    Yang Y, Luo H, Cao X, Kong W, Cai X. Preparation and characterization of a water resistance flame retardant and its enhancement on charring–forming for polycarbonate. J Therm Anal Calorim. 2017;129(2):809–20.

    CAS  Article  Google Scholar 

  17. 17.

    Bao X, Cai X. Synergistic effect of methyl phenyl silicone resin and DOPO on the flame retardancy of epoxy resins. J Therm Anal Calorim. 2014;118(1):369–75.

    CAS  Article  Google Scholar 

  18. 18.

    Xu M-J, Ma Y, Hou M-J, Li B. Synthesis of a cross-linked triazine phosphine polymer and its effect on fire retardancy, thermal degradation and moisture resistance of epoxy resins. Polym Degrad Stab. 2015;119:14–22.

    CAS  Article  Google Scholar 

  19. 19.

    Zhang X, Zhong Y, Mao Z-P. The flame retardancy and thermal stability properties of poly (ethylene terephthalate)/hexakis (4-nitrophenoxy) cyclotriphosphazene systems. Polym Degrad Stab. 2012;97(8):1504–10.

    CAS  Article  Google Scholar 

  20. 20.

    Xu G-R, Xu M-J, Li B. Synthesis and characterization of a novel epoxy resin based on cyclotriphosphazene and its thermal degradation and flammability performance. Polym Degrad Stab. 2014;109:240–8.

    CAS  Article  Google Scholar 

  21. 21.

    Zhang W, Li X, Li L, Yang R. Study of the synergistic effect of silicon and phosphorus on the blowing-out effect of epoxy resin composites. Polym Degrad Stab. 2012;97(6):1041–8.

    CAS  Article  Google Scholar 

  22. 22.

    Zhang L, Wang Y, Cai X. Effect of a novel polysiloxane-containing nitrogen on the thermal stability and flame retardancy of epoxy resins. J Therm Anal Calorim. 2016;124(2):791–8.

    CAS  Article  Google Scholar 

  23. 23.

    Yang S, Wang J, Huo S, Wang M, Wang J. Preparation and flame retardancy of a compounded epoxy resin system composed of phosphorus/nitrogen-containing active compounds. Polym Degrad Stab. 2015;121:398–406.

    CAS  Article  Google Scholar 

  24. 24.

    Jiao C, Wang H, Li S, Chen X. Fire hazard reduction of hollow glass microspheres in thermoplastic polyurethane composites. J Hazard Mater. 2017;332:176–84.

    CAS  Article  Google Scholar 

  25. 25.

    Zhang W, Li X, Yang R. Pyrolysis and fire behaviour of epoxy resin composites based on a phosphorus-containing polyhedral oligomeric silsesquioxane (DOPO-POSS). Polym Degrad Stab. 2011;96(10):1821–32.

    CAS  Article  Google Scholar 

  26. 26.

    Jiao C, Wang H, Zhang Z, Chen X. Preparation and properties of an efficient smoke suppressant and flame-retardant agent for thermoplastic polyurethane. Poly Adv Technol. 2017;28:1690–1698.

    CAS  Article  Google Scholar 

  27. 27.

    Ding H, Wang J, Wang C, Chu F. Synthesis of a novel phosphorus and nitrogen-containing bio-based polyols and its application in flame retardant polyurethane sealant. Polym Degrad Stab. 2016;124:43–50.

    CAS  Article  Google Scholar 

  28. 28.

    Chen X, Wang W, Li S, Jiao C. Fire safety improvement of para-aramid fiber in thermoplastic polyurethane elastomer. J Hazard Mater. 2017;324(Pt B):789–96.

    CAS  Article  Google Scholar 

  29. 29.

    Xu W, Wirasaputra A, Liu S, Yuan Y, Zhao J. Highly effective flame retarded epoxy resin cured by DOPO-based co-curing agent. Polym Degrad Stab. 2015;122:44–51.

    CAS  Article  Google Scholar 

  30. 30.

    Min Y, Li P, Yin X-G, Ban D-M. Synthesis and characterization of an novel flame retardant based on phosphaphenanthrene for epoxy resin. Polym Bull. 2016;74(1):1–10.

    Article  Google Scholar 

  31. 31.

    Xie H, Lai X, Li H, Zeng X. Synthesis of a novel macromolecular charring agent with free-radical quenching capability and its synergism in flame retardant polypropylene. Polym Degrad Stab. 2016;130:68–77.

    CAS  Article  Google Scholar 

  32. 32.

    Zhao X, Gao S, Liu G. A THEIC-based polyphosphate melamine intumescent flame retardant and its flame retardancy properties for polylactide. J Anal Appl Pyrol. 2016;122:24–34.

    CAS  Article  Google Scholar 

Download references


We would like to thank the generous supports by the following: the experiment center of polymer science and engineering academy, Sichuan University.

Author information



Corresponding author

Correspondence to Xufu Cai.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Luo, H., Zhou, F., Yang, Y. et al. Synergistic flame-retardant behavior and mechanism of tris(3-nitrophenyl) phosphine and DOPO in epoxy resins. J Therm Anal Calorim 132, 483–491 (2018).

Download citation


  • Flame retardant
  • Phosphorus
  • DOPO
  • Synergistic effect
  • Epoxy resins