Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 133, Issue 1, pp 413–419 | Cite as

Synthesis and characterization of LaFeO3 powders prepared by a mixed mechanical/thermal processing route

  • Vittorio Berbenni
  • Giovanna Bruni
  • Chiara Milanese
  • Alessandro Girella
  • Amedeo Marini
Article

Abstract

Lanthanum ferrite, LaFeO3 (LF), has raised considerable interest since it can be used in many applications such as solid-oxide fuel cell electrode, sensor material (H2O and ethanol) and catalyst. Since the conventional ceramic route of synthesis has some disadvantages, mainly related to an exaggerated grain growth, LF has been prepared by different methods including combustion synthesis, sol–gel, hydrothermal processes, polymerizable complex method and mechanochemistry. As concerns this last method, a problem occurs due to the moisture sensitivity of La2O3. To overcome the problem, we used lanthanum acetate sesquihydrate [La(CH3COO)3·1.5H2O] and iron (II) oxalate dehydrate [FeC2O4·2H2O] as precursors. The mechanism of the solid-state reactions in the mixtures has been studied by TG–DSC and XRPD. Synthesis of LaFeO3 has been realized by annealing the mechanically activated mixtures for 3 h at temperatures between 500 and 800 °C. While LF prepared at 500 °C < T < 600 °C has an amorphous character, LF obtained at T ≥ 600 °C is free from carbonaceous impurities as it is shown by FT-IR and TG measurements. The specific area of the LaFeO3 powders obtained starting from the mechanically activated mixture is decreasing by increasing the annealing temperature. On the contrary, the annealing on samples of physical mixture at temperatures up to 800 °C only yields a mixture of LaFeO3, La2O3 and Fe2O3.

Keywords

Lanthanum ferrite Mechanochemistry Thermal analysis Specific surface area 

References

  1. 1.
    Kumar M, Srikanth S, Ravikumar B, Alex TC, Das SWK. Synthesis of pure and Si-doped LaGaO3, LaFeO3 and LaCoO3 and Sr-Mg-doped LaGaO3 for ITSOFC application using different wet chemical routes. Mater Chem Phys. 2009;113:803–15.CrossRefGoogle Scholar
  2. 2.
    Song P, Wang Q, Zang Z, Yan Z. Synthesis and gas sensing properties of biomorphic LaFeO3 hollow fibers templated from cotton. Sens Actuators. 2010;B147:248–54.CrossRefGoogle Scholar
  3. 3.
    Chandradass J, Hyeon Kim K. Nano-LaFeO3 powder preparation by calcining an emulsion precursors. Mater Chem Phys. 2010;122:329–32.CrossRefGoogle Scholar
  4. 4.
    Parida KM, Reddy KH, Martha S, Dars DP, Biswale N. Fabrication of nanocrystalline LaFeO3: an efficient sol-gel auto-combustion assisted visible light responsive photocatalyst for water decomposition. Int J Hydrog Energy. 2010;35:12161–8.CrossRefGoogle Scholar
  5. 5.
    Idrees M, Nadcem M, Atif M, Siddique M, Mehmood M, Hassan MM. Origin of colossal dielectric response in LaFeO3. Acta Mater. 2011;59:1338–45.CrossRefGoogle Scholar
  6. 6.
    Belessi VC, Trikalis PN, Ladavos AK, Bakas TV, Pomonis PJ. Structure and catalytic activity of La1−xFeO3 (x = 0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.35) for the NO + CO reaction. Appl Catal A. 1999;177:53–68.CrossRefGoogle Scholar
  7. 7.
    Wang Y, Zhu J, Zhang L, Jang X, Lu L, Wang X. Preparation and characterization of perovskite LaFeO3 nanocrystals. Mater Lett. 2006;60:1767–70.CrossRefGoogle Scholar
  8. 8.
    Rajendran M, Bhattacharya AK. Nanocrystalline orthoferrite powders: synthesis and magnetic properties. J Eur Ceram Soc. 2006;26:3675–9.CrossRefGoogle Scholar
  9. 9.
    Kemeng J, Hongxing D, Jiguang D, Song L, Shaohua X, Han W. Glucose assisted hydrothermal preparation of porous LaFeO3 for toluene combustion. J Solid State Chem. 2013;199:164–70.CrossRefGoogle Scholar
  10. 10.
    Popa M, Franti J, Kakihama M. Lanthanum ferrite nanopowders obtained by the polymerizable complex method. Solid State Ion. 2002;154–155:437–45.CrossRefGoogle Scholar
  11. 11.
    Andoulsi R, Horchani-Naifer K, Ferid M. Preparation of lanthanum ferrite powder. Ceramica. 2012;58:126–30.CrossRefGoogle Scholar
  12. 12.
    Sorescu M, Tiantang X, Burnett JD, Aitken JA. Investigation of LaFeO3 perovskite growth mechanism through mechanical ball milling of La and Fe oxides. J Mater Sci. 2011;46:6709–19.CrossRefGoogle Scholar
  13. 13.
    Cristobal AA, Botta PM, Bercoff PG, Porto Lopez JM. Mechanosynthesis and magnetic properties of microcrystalline LaFeO3 using different iron oxides. Mater Res Bull. 2009;44:1036–40.CrossRefGoogle Scholar
  14. 14.
    Berbenni V, Marini A, Bruni G. Effect of mechanical milling on solid state formation of BaTiO3 from BaCO3–TiO2 (rutile) mixtures. ThermochimicaActa. 2001;374:151–8.CrossRefGoogle Scholar
  15. 15.
    Berbenni V, Milanese C, Bruni G, Girella A, Marini A. Synthesis of YFeO3 by thermal decomposition of mechanically activated mixtures Y(CH3COO)3·4H2O–FeC2O4·2H2O. ThermochimicaActa. 2011;521:218–23.CrossRefGoogle Scholar
  16. 16.
    Berbenni V, Milanese C, Bruni G, Girella A, Marini A. Synthesis of calcium metastannate (CaSnO3) by solid state reactions in mechanically activated mixtures calcium citrate tetra hydrate [Ca3(C6H5O7)2·4H2O]—tin(II) oxalate (SnC2O4). Thermochim Acta. 2015;608:59–64.CrossRefGoogle Scholar
  17. 17.
    Berbenni V, Milanese C, Bruni G, Marini A. The combined effect of mechanical and thermal energy on the solid-state formation of NiFe2O4 from the system 2NiCO3·3Ni(OH)2·4H2O–FeC2O4·2H2O. Thermochim Acta. 2008;469:86–90.CrossRefGoogle Scholar
  18. 18.
    Sivakumar M, Gedanken A, Zhong W, Jiang YH, Du YW, Brukental I, Bhattacharya D, Yeshurun Y, Novik I. Sonochemical synthesis of nanocrystalline LaFeO3. J Mater Chem. 2004;14:764–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Vittorio Berbenni
    • 1
  • Giovanna Bruni
    • 1
  • Chiara Milanese
    • 1
  • Alessandro Girella
    • 1
  • Amedeo Marini
    • 1
  1. 1.C.S.G.I and Department of Chemistry-Section of Physical ChemistryUniversity of PaviaPaviaItaly

Personalised recommendations