Skip to main content
Log in

Thermal conductivity of a hybrid nanofluid

A new economic strategy and model

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Hybrid nanofluid can be considered as a new generation of nanofluids. Despite the success of the researchers in the field of hybrid nanofluids, no acceptable model has been proposed yet that can accurately predict the thermal conductivity of these nanofluids. The nanofluids, containing carbon nanotubes, are not excluded. This research to provide a model based on previous models to predict the thermal conductivity of hybrid nanofluids containing carbon nanotubes. For this reason, the thermal conductivity of MWCNT–MgO/water–EG nanofluids was experimentally measured. The experimental data were in seven solid volume fractions from 0.015 to 0.96%, in which the tests have been done at the temperature range 30–50 °C. A modified conventional model (as a proposed correlation in present study) can produce better results in forecasting the experimental data. The predicted data error by modified Jang–Choi model as proposed correlation was less than 3%. In addition, the price–performance analysis of the thermal conductivity data shows that hybrid nanofluids are better than single particle nanofluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

MgO:

Magnesium oxide

CNT:

Carbon nanotube

MWCNT:

Multi-walled carbon nanotube

EG:

Ethylene glycol

MOD:

Margin of deviation

R :

Regression coefficient

XRD:

X-ray diffraction

nm:

Nanometer

k :

Thermal conductivity (W m−1 K−1)

T :

Temperature (°C)

bf:

Base fluid

nf:

Nanofluid

\(\theta\) :

Angle between a nanotube and a desired fixed direction

φ :

Particle solid volume fraction

\(\beta\) :

Value of Kapitza resistance

References

  1. Chol SU. Enhancing thermal conductivity of fluids with nanoparticles. ASME Publ Fed. 1995;231:99–106.

    Google Scholar 

  2. Hemmat Esfe M, Afrand M, Karimipour A, Yan WM, Sina N. An experimental study on thermal conductivity of MgO nanoparticles suspended in a binary mixture of water and ethylene glycol. Int Commun Heat Mass Transf. 2015;67:173–5.

    Article  CAS  Google Scholar 

  3. Fereidoon A, Saedodin S, Hemmat Esfe M, Noroozi MJ. Evaluation of mixed convection in inclined square lid-driven cavity filled with Al2O3/water nano-fluid. Eng Appl Comput Fluid Mech. 2013;7:55–65.

    Google Scholar 

  4. Hemmat Esfe M, Akbari M, Semiromi DT, Karimiopour A, Afrand M. Effect of nanofluid variable properties on mixed convection flow and heat transfer in an inclined two-sided lid-driven cavity with sinusoidal heating on sidewalls. Heat Transf Res. 2014;45:409–32.

    Article  Google Scholar 

  5. Izadi M, Shahmardan MM, Behzadmehr A, Rashidi AM, Amrollahi A. Modeling of effective thermal conductivity and viscosity of carbon structured nanofluid. Transp Phenom Nano Micro Scales. 2015;3:1–3.

    Google Scholar 

  6. Hemmat Esfe M, Saedodin S. Turbulent forced convection heat transfer and thermophysical properties of MgO–water nanofluid with consideration of different nanoparticles diameter, an empirical study. J Therm Anal Calorim. 2015;119:1205–13.

    Article  CAS  Google Scholar 

  7. Hemmat Esfe M, Saedodin S, Wongwises S, Toghraie D. An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. J Therm Anal Calorim. 2015;119:1817–24.

    Article  CAS  Google Scholar 

  8. Hemmat Esfe M, Saedodin S, Asadi A, Karimipour A. Thermal conductivity and viscosity of Mg(OH)2–ethylene glycol nanofluids. J Therm Anal Calorim. 2015;120:1145–9.

    Article  CAS  Google Scholar 

  9. Hemmat Esfe M, Saedodin S, Mahian O, Wongwises S. Thermal conductivity of AlO/water nanofluids. J Therm Anal Calorim. 2014;117:675–81.

    Article  CAS  Google Scholar 

  10. Aberoumand H, Jahani A, Aberoumand S, Jafarimoghaddam A. Experimental investigation on heat transfer of silver-oil nanofluid in concentric annular tube. Transp Phenom Nano Micro Scales. 2015;30:118–28.

    Google Scholar 

  11. Hemmat Esfe M, Behbahani PM, Abbasian Arani AA, Sarlak MR. Thermal conductivity enhancement of SiO2–MWCNT (85: 15%)–EG hybrid nanofluids. J Therm Anal Calorim. 2017;128:249–58.

    Article  CAS  Google Scholar 

  12. Hemmat Esfe M, Saedodin S, Mahian O, Wongwises S. Efficiency of ferromagnetic nanoparticles suspended in ethylene glycol for applications in energy devices: effects of particle size, temperature, and concentration. Int Commun Heat Mass Transf. 2014;58:138–46.

    Article  CAS  Google Scholar 

  13. Hemmat Esfe M, Abbasian Arani AA, Yan WM, Ehteram H, Aghaie A, Afrand M. Natural convection in a trapezoidal enclosure filled with carbon nanotube-EG-water nanofluid. Int J Heat Mass Transf. 2016;92:76–82.

    Article  CAS  Google Scholar 

  14. Hemmat Esfe M, Akbari M, Karimipour A, Afrand M, Mahian O, Wongwises S. Mixed-convection flow and heat transfer in an inclined cavity equipped to a hot obstacle using nanofluids considering temperature-dependent properties. Int J Heat Mass Transf. 2015;85:656–66.

    Article  CAS  Google Scholar 

  15. Motahari K, Abdollahi-Moghaddam M, Rezaei A. An experimental investigation of reduced water consumption of coolers using various concentrations of CuO/water nanofluid instead of pure water. In: 4th annual international conference on chemistry, chemical engineering and chemical process (CCECP 2016); 2016.

  16. Tafarroj MM, Mahian O, Kasaeian A, Sakamatapan K, Dalkilic AS, Wongwises S. Artificial neural network modeling of nanofluid flow in a microchannel heat sink using experimental data. Int Commun Heat Mass Transf. 2017;86:25–31.

    Article  CAS  Google Scholar 

  17. Hemmat Esfe M, Afrand M, Yan WM, Akbari M. Applicability of artificial neural network and nonlinear regression to predict thermal conductivity modeling of Al2O3–water nanofluids using experimental data. Int Commun Heat Mass Transf. 2015;66:246–9.

    Article  CAS  Google Scholar 

  18. Hemmat Esfe M, Saedodin S, Bahiraei M, Toghraie D, Mahian O, Wongwises S. Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network. J Therm Anal Calorim. 2014;118:287–94.

    Article  CAS  Google Scholar 

  19. Hemmat Esfe M, Rostamian H, Toghraie D, Yan WM. Using artificial neural network to predict thermal conductivity of ethylene glycol with alumina nanoparticle. J Therm Anal Calorim. 2016;126:643–8.

    Article  CAS  Google Scholar 

  20. Hemmat Esfe M, Razi P, Hajmohammad MH, Rostamian SH, Sarsam WS, Abbasian Arani AA, Dahari M. Optimization, modeling and accurate prediction of thermal conductivity and dynamic viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids by NSGA-II using ANN. Int Commun Heat Mass Transf. 2017;82:154–60.

    Article  CAS  Google Scholar 

  21. Hemmat Esfe M, Esfandeh S, Saedodin S, Rostamian H. Experimental evaluation, sensitivity analyzation and ANN modeling of thermal conductivity of ZnO-MWCNT/EG-water hybrid nanofluid for engineering applications. Appl Therm Eng. 2017; 125:673–85.

    Article  CAS  Google Scholar 

  22. Baghbani Arani J, Narooei A, Aghayari R, Maddah H. Nanofluid thermal conductivity prediction model based on artificial neural network. Transp Phenom Nano Micro Scales. 2016;4:41–6.

    Google Scholar 

  23. Hemmat Esfe M, Rejvani M, Karimpour R, Abbasian Arani AA. Estimation of thermal conductivity of ethylene glycol-based nanofluid with hybrid suspensions of SWCNT–Al2O3 nanoparticles by correlation and ANN methods using experimental data. J Therm Anal Calorim. 2017;128:1359–71.

    Article  Google Scholar 

  24. Rostamian SH, Biglari M, Saedodin S, Hemmat Esfe M. An inspection of thermal conductivity of CuO-SWCNTs hybrid nanofluid versus temperature and concentration using experimental data, ANN modeling and new correlation. J Mol Liq. 2017;231:364–9.

    Article  CAS  Google Scholar 

  25. Alirezaie A, Saedodin S, Hemmat Esfe H, Rostamian SH. Investigation of rheological behavior of MWCNT (COOH-functionalized)/MgO-Engine oil hybrid nanofluids and modelling the results with artificial neural networks. J Mol Liq. 2017;241:173–81.

    Article  CAS  Google Scholar 

  26. Hemmat Esfe M, Ahangar MR, Rejvani M, Toghraie D, Hajmohammad MH. Designing an artificial neural network to predict dynamic viscosity of aqueous nanofluid of TiO2 using experimental data. Int Commun Heat Mass Transf. 2016;75:192–6.

    Article  CAS  Google Scholar 

  27. Hemmat Esfe M, Saedodin S, Yan WM, Afrand M, Sina N. Study on thermal conductivity of water-based nanofluids with hybrid suspensions of CNTs/Al2O3 nanoparticles. J Therm Anal Calorim. 2016;124:455–60.

    Article  CAS  Google Scholar 

  28. Hemmat Esfe M, Afrand M, Wongwises S, Naderi A, Asadi A, Rostami S, Akbari M. Applications of feedforward multilayer perceptron artificial neural networks and empirical correlation for prediction of thermal conductivity of Mg (OH) 2–EG using experimental data. Int Commun Heat Mass Transf. 2015;67:46–50.

    Article  CAS  Google Scholar 

  29. J. C. Maxwell, A treatise on electricity and magnetism, vol. 1. Clarendon press, 1881.

  30. Hemmat Esfe M, Saedodin S, Naderi A, Alirezaie A, Karimipour A, Wongwises S, Goodarzi M, bin Dahari M. Modeling of thermal conductivity of ZnO-EG using experimental data and ANN methods. Int Commun Heat Mass Transf. 2015;63:35–40.

    Article  CAS  Google Scholar 

  31. Mostafizur RM, Bhuiyan MH, Saidur R, Aziz AA. Thermal conductivity variation for methanol based nanofluids. Int J Heat Mass Transf. 2014;76:350–6.

    Article  CAS  Google Scholar 

  32. Xing M, Yu J, Wang R. Experimental study on the thermal conductivity enhancement of water based nanofluids using different types of carbon nanotubes. Int J Heat Mass Transf. 2015;88:609–16.

    Article  CAS  Google Scholar 

  33. Li X, Zou C, Lei X, Li W. Stability and enhanced thermal conductivity of ethylene glycol-based SiC nanofluids. Int J Heat Mass Transf. 2015;89:613–9.

    Article  CAS  Google Scholar 

  34. Hemmat Esfe M, Yan WM, Akbari M, Karimipour A, Hassani M. Experimental study on thermal conductivity of DWCNT–ZnO/water–EG nanofluids. Int Commun Heat Mass Transf. 2015;68:248–51.

    Article  CAS  Google Scholar 

  35. Munkhbayar B, Tanshen MR, Jeoun J, Chung H, Jeong H. Surfactant-free dispersion of silver nanoparticles into MWCNT-aqueous nanofluids prepared by one-step technique and their thermal characteristics. Ceram Int. 2013;39(6):6415–25.

    Article  CAS  Google Scholar 

  36. Chen L, Yu W, Xie H. Enhanced thermal conductivity of nanofluids containing Ag/MWNT composites. Powder Technol. 2012;231:18–20.

    Article  CAS  Google Scholar 

  37. Jana S, Salehi-Khojin A, Zhong WH. Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives. Thermochim Acta. 2007;462(1):45–55.

    Article  CAS  Google Scholar 

  38. Chen L, Cheng M, Yang D, Yang L. Enhanced thermal conductivity of nanofluid by synergistic effect of multi-walled carbon nanotubes and Fe2O3 nanoparticles. Appl Mech Mater. 2014;548–549:118–23.

  39. Baghbanzadeh M, Rashidi A, Rashtchian D, Lotfi R, Amrollahi A. Synthesis of spherical silica/multiwall carbon nanotubes hybrid nanostructures and investigation of thermal conductivity of related nanofluids. Thermochim Acta. 2012;549:87–94.

    Article  CAS  Google Scholar 

  40. Baghbanzadeh M, Rashidi A, Soleimanisalim AH, Rashtchian D. Investigating the rheological properties of nanofluids of water/hybrid nanostructure of spherical silica/MWCNT. Thermochim Acta. 2014;578:53–8.

    Article  CAS  Google Scholar 

  41. Jyothirmayee Aravind SS, Ramaprabhu S. Graphene wrapped multiwalled carbon nanotubes dispersed nanofluids for heat transfer applications. J Appl Phys. 2012;112(12):124304.

    Article  Google Scholar 

  42. Baby TT, Ramaprabhu S. Synthesis and nanofluid application of silver nanoparticles decorated graphene. J Mater Chem. 2011;21(26):9702–9.

    Article  CAS  Google Scholar 

  43. Baby TT, Ramaprabhu S. Experimental investigation of the thermal transport properties of a carbon nanohybrid dispersed nanofluid. Nanoscale. 2011;3(5):2208–14.

    Article  CAS  Google Scholar 

  44. Theres Baby T, Sundara R. Synthesis of silver nanoparticle decorated multiwalled carbon nanotubes-graphene mixture and its heat transfer studies in nanofluid. AIP Adv. 2013;3(1):012111.

    Article  Google Scholar 

  45. Sundar LS, Singh MK, Sousa AC. Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids. Int Commun Heat Mass Transf. 2014;52:73–83.

    Article  CAS  Google Scholar 

  46. Megatif L, Ghozatloo A, Arimi A, Shariati-Niasar M. Investigation of laminar convective heat transfer of a novel TiO2–carbon nanotube hybrid water-based nanofluid. Exp Heat Transf. 2016;29(1):124–38.

    Article  CAS  Google Scholar 

  47. Nimmagadda R, Venkatasubbaiah K. Multiphase approach on heat transfer performance of micro-channel using hybrid carbon nanofluid. In: ASME 2015 13th international conference on nanochannels, microchannels, and minichannels collocated with the ASME 2015 international technical conference and exhibition on packaging and integration of electronic and photonic microsystems 2015 July 6. American Society of Mechanical Engineers. p. V001T04A050.

  48. Suresh S, Venkitaraj KP, Selvakumar P. Synthesis, characterisation of Al2O3–Cu nano composite powder and water based nanofluids. In: Advanced Materials Research, vol. 328. Trans Tech Publications, 2011. p. 1560–1567.

  49. Suresh S, Venkitaraj KP, Selvakumar P, Chandrasekar M. Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids Surfaces A Physicochem Eng Asp. 2011;388(1):41–8.

    Article  CAS  Google Scholar 

  50. Han WS, Rhi SH. Thermal characteristics of grooved heat pipe with hybrid nanofluids. Therm Sci. 2011;15(1):195–206.

    Article  Google Scholar 

  51. Bhosale GH, Borse SL. Pool boiling CHF Enhancement with Al2O3–Cuo/H2O hybrid nanofluid. Int J Eng Res Technol E. 2013;2(10):946–50.

    Google Scholar 

  52. Zhang X, Li C, Zhang Y, Jia D, Li B, Wang Y, Yang M, Hou Y, Zhang X. Performances of Al2O3/SiC hybrid nanofluids in minimum-quantity lubrication grinding. Int J Adv Manuf Technol. 2016;86(9–12):3427–41.

    Article  Google Scholar 

  53. Jiao D, Zheng S, Wang Y, Guan R, Cao B. The tribology properties of alumina/silica composite nanoparticles as lubricant additives. Appl Surf Sci. 2011;257(13):5720–5.

    Article  CAS  Google Scholar 

  54. Hemmat Esfe M, Arani AA, Rezaie M, Yan WM, Karimipour A. Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid. Int Commun Heat Mass Transf. 2015;66:189–95.

    Article  CAS  Google Scholar 

  55. Hemmat Esfe M, Wongwises S, Naderi A, Asadi A, Safaei MR, Rostamian H, Dahari M, Karimipour A. Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: experimental data and modeling using artificial neural network and correlation. Int Commun Heat Mass Transf. 2015;66:100–4.

    Article  CAS  Google Scholar 

  56. Jang SP, Choi SU. Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett. 2004;84(21):4316–8.

    Article  CAS  Google Scholar 

  57. Lee S, Choi SS, Li SA, Eastman JA. Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf. 1999;121(2):280–9.

    Article  CAS  Google Scholar 

  58. Bentley JP. Temperature sensor characteristics and measurement system design. J Phys E. 1984;17(6):430.

    Article  Google Scholar 

  59. Hemmat Esfe M, Alirezaie A, Rejvani M. An applicable study on the thermal conductivity of SWCNT-MgO hybrid nanofluid and price-performance analysis for energy management. Appl Therm Eng. 2017;111:1202–10.

    Article  CAS  Google Scholar 

  60. Sundar LS, Farooky MH, Sarada SN, Singh MK. Experimental thermal conductivity of ethylene glycol and water mixture based low volume concentration of Al2O3 and CuO nanofluids. Int Commun Heat Mass Transf. 2013;41:41–6.

    Article  CAS  Google Scholar 

  61. Esfe MH, Esfandeh S, Rejvani M. Modeling of thermal conductivity of MWCNT-SiO2 (30:70%)/EG hybrid nanofluid, sensitivity analyzing and cost performance for industrial applications. J Therm Anal Calorim. 1–11.

  62. Esfe MH, Esfandeh S (2017) Investigation of rheological behavior of hybrid oil based nanolubricant-coolant applied in car engines and cooling equipments. Appl Therm Eng. (accepted manuscript, in press).

  63. Hemmat Esfe M, Alirezaie A, Rejvani M. TTTd alterations gradient of thermal conductivity increases with the rise of volume fraction of up to 1%, and emmmy then, the sensitivity decreases. Generally, the current study is a combination of empirical studies along. Appl Therm Eng. 2017;111:1202–10.

    Article  CAS  Google Scholar 

  64. Alirezaie A, Hajmohammad MH, Ahangar MRH, Hemmat Esfe M. Price-performance evaluation of thermal conductivity enhancement of nanofluids with different particle sizes. Appl Therm Eng. 2018;128:373–80.

    Article  CAS  Google Scholar 

  65. Hemmat Esfe M, Rostamian H, Shabani-samghabadi A, Arani AAA. Application of three-level general factorial design approach for thermal conductivity of MgO/water nanofluids. Appl Therm Eng. 2017;127:1194–9.

    Article  CAS  Google Scholar 

  66. Hemmat Esfe M, Hajmohammad H, Moradi R, Arani AAA. Multi-objective optimization of cost and thermal performance of double walled carbon nanotubes/water nanofluids by NSGA-II using response surface method. Appl Therm Eng. 2017;112:1648–57.

    Article  CAS  Google Scholar 

  67. Esfe MH, Zabihi F, Rostamian H, Esfandeh S. Experimental investigation, model development of the non-Newtonian behavior of CuO-MWCNT-10w40 nano-lubricant for lubrication purposes. J Mol Liq. 2017.

  68. Hemmat Esfe M. Designing an artificial neural network using radial basis function (RBF-ANN) to model thermal conductivity of ethylene glycol–water-based TiO2 nanofluids. J Therm Anal Calorim. 2017;127(3):2125–31.

    Article  CAS  Google Scholar 

  69. Hemmat Esfe M, Ahangar MRH, Toghraie D, Hajmohammad MH, Rostamian H, Tourang H. Designing artificial neural network on thermal conductivity of Al2O3–water–EG (60–40%) nanofluid using experimental data. J Therm Anal Calorim. 2016;126(2):837–43.

    Article  CAS  Google Scholar 

  70. Hemmat Esfe M, Naderi A, Akbari M, Afrand M, Karimipour A. Evaluation of thermal conductivity of COOH-functionalized MWCNTs/water via temperature and solid volume fraction by using experimental data and ANN methods. J Therm Anal Calorim. 2015;121(3):1273–8.

    Article  CAS  Google Scholar 

  71. Hemmat Esfe M, Karimpour R, Arani AAA, Shahram J. Experimental investigation on non-Newtonian behavior of Al2O3-MWCNT/5W50 hybrid nano-lubricant affected by alterations of temperature, concentration and shear rate for engine applications. Int Commun Heat Mass Transf. 2017;82:97–102.

    Article  CAS  Google Scholar 

  72. Hemmat Esfe M, Saedodin S, Biglari M, Rostamian H. An experimental study on thermophysical properties and heat transfer characteristics of low volume concentrations of Ag–water nanofluid. Int Commun Heat Mass Transf. 2016;74:91–7.

    Article  CAS  Google Scholar 

  73. Hemmat Esfe M, Hajmohammad MH, Razi P, Ahangar MRH, Arani AAA. The optimization of viscosity and thermal conductivity in hybrid nanofluids prepared with magnetic nanocomposite of nanodiamond cobalt-oxide (ND-Co3O4) using NSGA-II and RSM. Int Commun Heat Mass Transf. 2016;79:128–34.

    Article  CAS  Google Scholar 

  74. Hemmat Esfe M, Saedodin S, Biglari M, Rostamian H. Experimental investigation of thermal conductivity of CNTs-Al2O3/water: a statistical approach. Int Commun Heat Mass Transf. 2015;69:29–33.

    Article  CAS  Google Scholar 

  75. Hemmat Esfe M, Arani AAA, Firouzi M. Empirical study and model development of thermal conductivity improvement and assessment of cost and sensitivity of EG–water based SWCNT-ZnO (30%: 70%) hybrid nanofluid. J Mol Liq. 2017;244:252–61.

    Article  CAS  Google Scholar 

  76. Hemmat Esfe M, Sarlak MR. Experimental investigation of switchable behavior of CuO-MWCNT (85%–15%)/10W-40 hybrid nano-lubricants for applications in internal combustion engines. J Mol Liq. 2017;242:326–35.

    Article  CAS  Google Scholar 

  77. Hemmat Esfe M, Hajmohammad MH. Thermal conductivity and viscosity optimization of nanodiamond-Co3O4/EG (40: 60) aqueous nanofluid using NSGA-II coupled with RSM. J Mol Liq. 2017;238:545–52.

    Article  CAS  Google Scholar 

  78. Hemmat Esfe M, Saedodin S. An experimental investigation and new correlation of viscosity of ZnO–EG nanofluid at various temperatures and different solid volume fractions. Exp Thermal Fluid Sci. 2014;55:1–5.

    Article  CAS  Google Scholar 

  79. Hemmat Esfe M, Rostamian H, Sarlak MR, Rejvani M, Alirezaie A. Rheological behavior characteristics of TiO2-MWCNT/10w40 hybrid nano-oil affected by temperature, concentration and shear rate: an experimental study and a neural network simulating. Physica E Low Dimens Syst Nanostr. 2017;94:231–40.

    Article  CAS  Google Scholar 

  80. Hemmat Esfe, M. , Tatar, A., Ahangar, M. R. H., & Rostamian, H. A comparison of performance of several artificial intelligence methods for predicting the dynamic viscosity of TiO2/SAE 50 nano-lubricant. Physica E Low Dimens Syst Nanostr. 2017.

  81. Hemmat Esfe M, Saedodin S, Rejvani M, Shahram J. Experimental investigation, model development and sensitivity analysis of rheological behavior of ZnO/10W40 nano-lubricants for automotive applications. Physica E Low Dimens Syst Nanostr. 2017;90:194–203.

    Article  CAS  Google Scholar 

  82. Hemmat Esfe M, et al. Multi-objective optimization of nanofluid flow in double tube heat exchangers for applications in energy systems. Energy. 2017.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hemmat Esfe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemmat Esfe, M., Kiannejad Amiri, M. & Alirezaie, A. Thermal conductivity of a hybrid nanofluid. J Therm Anal Calorim 134, 1113–1122 (2018). https://doi.org/10.1007/s10973-017-6836-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6836-9

Keywords

Navigation