Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 131, Issue 3, pp 2637–2646 | Cite as

Ablation, thermal stability/transport/phase transition study of carbon nanofiber-reinforced elastomeric nanocomposites

  • Sadia Sagar Iqbal
  • Fawad Inam
  • Ali Bahadar
  • Muhammad Arshad Bashir
  • Faiza Hassan
  • Mohammad Bilal Khan
  • Zaffar M. Khan
  • Tahir Jamil
Article
  • 152 Downloads

Abstract

Novelty of presented research is focused on ablation and thermomechanical characteristics of various loadings of carbon nanofibers (CNFs) of polyisoprene elastomer (PR). Conventional method (banbury disperser with open mixing mill) is applied to complete fabrication process of CNF-reinforced elastomeric nanocomposites. Scanning electron micrographs confirm the proper distribution of CNFs within the elastomeric host matrix. The successful incorporation of CNFs into PR has reduced the back-face temperature and increased the ablation resistance CNF/PR elastomeric nanocomposite in front of ultrahigh temperature (oxyacetylene flame exposure). Carbon nanofiber network with the elastomeric chain restricts the thermal transport within the CNF/PR nanocomposite specimens. The synergistic effect of CNFs on crystallization, glass transition, melting temperatures (T m) of PR elastomeric nanocomposites is studied. Mechanical properties of PR are effectively enhanced by the impregnation of CNFs in the elastomeric nanocomposites.

Keywords

Polymer nanocomposites Carbon nanofibers Ablation Thermal stability Thermal transport analysis Phase transition studies Mechanical properties 

Notes

Acknowledgements

The authors thank University of the Punjab (fiscal year (2016–2017) research grant) and Higher Education Commission (HEC) of Pakistan for awarding funds to accomplish this research.

References

  1. 1.
    Bassyouni M, Iqbal N, Iqbal SS, Abdel-hamid S-S, Abdel-Aziz M, Javaid U, et al. Ablation and thermo-mechanical investigation of short carbon fiber impregnated elastomeric ablatives for ultrahigh temperature applications. Polym Degrad Stab. 2014;110:195–202.CrossRefGoogle Scholar
  2. 2.
    Iqbal N, Khan MB, Sagar S, Maqsood A. Fabrication and characterization of multiwalled carbon nanotubes/silicone rubber composites. J Appl Polym Sci. 2013;128(4):2439–46.  https://doi.org/10.1002/app.38410.CrossRefGoogle Scholar
  3. 3.
    Planeix J, Coustel N, Coq B, Brotons V, Kumbhar P, Dutartre R, et al. Application of carbon nanotubes as supports in heterogeneous catalysis. J Am Chem Soc. 1994;116(17):7935–6.CrossRefGoogle Scholar
  4. 4.
    Malas A, Das CK. Carbon black-clay hybrid nanocomposites based upon EPDM elastomer. J Mater Sci. 2012;47(4):2016–24.  https://doi.org/10.1007/s10853-011-6000-z.CrossRefGoogle Scholar
  5. 5.
    Wang YT, Wang CS, Yin HY, Wang LL, Xie HF, Cheng RS. Carboxyl-terminated butadiene-acrylonitrile-toughened epoxy/carboxyl-modified carbon nanotube nanocomposites: thermal and mechanical properties. Express Polym Lett. 2012;6(9):719–28.  https://doi.org/10.3144/expresspolymlett.2012.77.CrossRefGoogle Scholar
  6. 6.
    Srebrenkoska V, Bogoeva-Gaceva G, Dimeski D. Composite material based on an ablative phenolic resin and carbon fibers. J Serb Chem Soc. 2009;74(4):441–53.CrossRefGoogle Scholar
  7. 7.
    Ali Raza M, Westwood A, Stirling C, Brydson R, Hondow N. Effect of nanosized carbon black on the morphology, transport, and mechanical properties of rubbery epoxy and silicone composites. J Appl Polym Sci. 2012;126:641–52.CrossRefGoogle Scholar
  8. 8.
    Rea S, Linton D, Orr E, McConnell J. Electromagnetic shielding properties of carbon fibre composites in avionic systems. Mikrotalasna Revija. 2005;11(1):29–32.Google Scholar
  9. 9.
    Zhang WD, Phang IY, Liu T. Growth of carbon nanotubes on clay: unique nanostructured filler for high-performance polymer nanocomposites. Adv Mater. 2006;18(1):73–7.CrossRefGoogle Scholar
  10. 10.
    Rathinasamy P, Balamurugan P, Balu S, Subrahmanian V. Effect of adhesive-coated glass fiber in natural rubber (NR), acrylonitrile rubber (NBR), and ethylene–propylene–diene rubber (EPDM) formulations. I. Effect of adhesive-coated glass fiber on the curing and tensile properties of NR, NBR, and EPDM formulations. J Appl Polym Sci. 2003;91(2):1111–23.CrossRefGoogle Scholar
  11. 11.
    Pal K, Pal SK, Das CK, Kim JK. Effect of fillers on morphological and wear characteristics of NR/HSR blends with E-glass fiber. Mater Des. 2012;35:863–72.  https://doi.org/10.1016/j.matdes.2011.07.074.CrossRefGoogle Scholar
  12. 12.
    Yang J, Zhang LQ, Shi JH, Quan YN, Wang LL, Tian M. Mechanical and functional properties of composites based on graphite and carboxylated acrylonitrile butadiene rubber. J Appl Polym Sci. 2010;116(5):2706–13.  https://doi.org/10.1002/app.31792.Google Scholar
  13. 13.
    Sagar S, Iqbal N, Maqsood A, Bassyouni M. MWCNTS incorporated natural rubber composites: thermal insulation, phase transition and mechanical properties. Int J Eng Technol. 2014;6(3):168–73.CrossRefGoogle Scholar
  14. 14.
    Yu H, Li LL, Kido T, Xi GN, Xu GC, Guo F. Thermal and insulating properties of epoxy/aluminum nitride composites used for thermal interface material. J Appl Polym Sci. 2011;124(1):669–77.  https://doi.org/10.1002/app.35016.CrossRefGoogle Scholar
  15. 15.
    Mansilla MA, Silva L, Salgueiro W, Marzocca AJ, Somoza A. A study about the structure of vulcanized natural rubber/styrene butadiene rubber blends and the glass transition behavior. J Appl Polym Sci. 2012;125(2):992–9.  https://doi.org/10.1002/app.36321.CrossRefGoogle Scholar
  16. 16.
    Liu Q, Ren WT, Zhang Y, Zhang YX. A study on the curing kinetics of epoxycyclohexyl polyhedral oligomeric silsesquioxanes and hydrogenated carboxylated nitrile rubber by dynamic differential scanning calorimetry. J Appl Polym Sci. 2012;123(5):3128–36.  https://doi.org/10.1002/app.34954.CrossRefGoogle Scholar
  17. 17.
    Cybo J, Maszybrocka J, Barylski A, Kansy J. Resistance of UHMWPE to plastic deformation and wear and the possibility of its enhancement through modification by radiation. J Appl Polym Sci. 2012;125(6):4188–96.  https://doi.org/10.1002/app.36573.CrossRefGoogle Scholar
  18. 18.
    Wang YJ, Li HJ, Fu QG, Wu H, Yao DJ, Wei BB. Ablative property of HfC-based multilayer coating for C/C composites under oxy-acetylene torch. Appl Surf Sci. 2011;257(10):4760–3.CrossRefGoogle Scholar
  19. 19.
    Gao G, Zhang Z, Zheng Y, Jin Z. Effect of fiber orientation angle on thermal degradation and ablative properties of short-fiber reinforced EPDM/NBR rubber composites. Polym Compos. 2010;31(7):1223–31.Google Scholar
  20. 20.
    Natali M, Monti M, Puglia D, Kenny JM, Torre L. Ablative properties of carbon black and MWNT/phenolic composites: a comparative study. Compos A Appl Sci. 2011;43:174–82.CrossRefGoogle Scholar
  21. 21.
    Agari Y, Uno T. Thermal conductivity of polymer filled with carbon materials: effect of conductive particle chains on thermal conductivity. J Appl Polym Sci. 1985;30(5):2225–35.CrossRefGoogle Scholar
  22. 22.
    Iqbal N, Sagar S, Khan MB. Comprehensive ablation characteristics of ceramic fibers impregnated rubber composites. Int J Eng Technol. 2014;6(3):162–7.CrossRefGoogle Scholar
  23. 23.
    Iqbal N, Sagar S, Khan MB, Bassyouni MI, Khan ZM. Aluminum silicate fibers impregnated acrylonitrile butadiene rubber composites: ablation, thermal transport/stability, and mechanical inspection. J Appl Polym Sci. 2013;130(6):4392–400.Google Scholar
  24. 24.
    Thomas PS, Abdullateef AA, Al-Harthi MA, Basfar AA, Bandyopadhyay S, Atieh MA, et al. Effect of phenol functionalization of carbon nanotubes on properties of natural rubber nanocomposites. J Appl Polym Sci. 2011;124(3):2370–6.  https://doi.org/10.1002/app.35274.CrossRefGoogle Scholar
  25. 25.
    Asghar M, Iqbal N, Iqbal SS, Farooq M, Jamil T. Ablation and thermo-mechanical tailoring of EPDM rubber using carbon fibers. J Polym Eng. 2016;36(7):713–22.CrossRefGoogle Scholar
  26. 26.
    Singh S, Guchhait P, Bandyopadhyay G, Chaki T. Development of polyimide-nanosilica filled EPDM based light rocket motor insulator compound: influence of polyimide-nanosilica loading on thermal, ablation, and mechanical properties. Compos A Appl Sci. 2012;44:8–15.CrossRefGoogle Scholar
  27. 27.
    Jiang Y, Zhang X, He J, Yu L, Yang R. Effect of polyphenylsilsesquioxane on the ablative and flame-retardation properties of ethylene propylene diene monomer (EPDM) composite. Polym Degrad Stab. 2011;96:949–54.CrossRefGoogle Scholar
  28. 28.
    Sagar S, Iqbal N, Maqsood A, Shahid M, Shah NA, Jamil T, et al. Fabrication and thermal characteristics of functionalized carbon nanotubes impregnated polydimethylsiloxane nanocomposites. J Compos Mater. 2014;.  https://doi.org/10.1177/0021998314528733.Google Scholar
  29. 29.
    Sagar S, Iqbal N, Maqsood A, Javaid U. Thermogravimetric, differential scanning calorimetric and experimental thermal transport study of MWCNT/NBR nanocomposites. J Therm Anal Calorim. 2013;114(1):161–7.CrossRefGoogle Scholar
  30. 30.
    Iqbal SS, Inam F, Iqbal N, Jamil T, Bashir A, Shahid M. Thermogravimetric, differential scanning calorimetric, and experimental thermal transport study of functionalized nanokaolinite-doped elastomeric nanocomposites. J Therm Anal Calorim. 2016;125(2):871–80.CrossRefGoogle Scholar
  31. 31.
    Im H, Kim J. Effect of homogeneous Al(OH)3 covered MWCNT addition on the thermal conductivity of Al2O3/epoxy-terminated poly (dimethylsiloxane) composites. J Mater Sci. 2012;47(6):6025–6033.CrossRefGoogle Scholar
  32. 32.
    Bashir MA, Iqbal N, Shahid M, Ahmed R. Structural, viscoelastic, and vulcanization study of sponge ethylene–propylene–diene monomer composites with various carbon black loadings. J Appl Polym Sci. 2014;131(1):39423.CrossRefGoogle Scholar
  33. 33.
    Iqbal SS, Iqbal N, Jamil T, Bashir A, Khan ZM. Tailoring in thermomechanical properties of ethylene propylene diene monomer elastomer with silane functionalized multiwalled carbon nanotubes. J Appl Polym Sci. 2015;133:1–10.Google Scholar
  34. 34.
    Nair AB, Kurian P, Joseph R. Effect of aluminium hydroxide, chlorinated polyethylene, decabromo biphenyl oxide and expanded graphite on thermal, mechanical and sorption properties of oil-extended ethylene-propylene-diene terpolymer rubber. Mater Des. 2012;40:80–9.  https://doi.org/10.1016/j.matdes.2012.03.032.CrossRefGoogle Scholar
  35. 35.
    Torre L, Kenny J, Maffezzoli A. Degradation behaviour of a composite material for thermal protection systems Part II—process simulation. J Mater Sci. 1998;33(12):3145–9.CrossRefGoogle Scholar
  36. 36.
    Sagar S, Iqbal N, Maqsood A. Multiwalled carbon nanotubes impregnated rubber nanocomposites: thermal transport/decomposition and differential scanning calorimetric study. J Reinf Plast Compos. 2013;32(14):1052–61.CrossRefGoogle Scholar
  37. 37.
    Iqbal N, Sagar S, Khan MB, Rafique HM. Elastomeric ablative nanocomposites used in hyperthermal environments. Polym Eng Sci. 2013;54(2):255–63.CrossRefGoogle Scholar
  38. 38.
    Ganguli S, Aglan H, Dennig P, Irvin G. Effect of loading and surface modification of MWCNTs on the fracture behavior of epoxy nanocomposites. J Reinf Plast Compos. 2006;25(2):175–88.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Department of Polymer Engineering and Technology, CEETUniversity of the PunjabLahorePakistan
  2. 2.Department of Mechanical and Construction Engineering, Faculty of Engineering and EnvironmentNorthumbria UniversityNewcastle upon TyneUK
  3. 3.Department of Chemical and Materials EngineeringKing Abdulaziz UniversityRabighSaudi Arabia
  4. 4.Institute of Industrial Control SystemRawalpindiPakistan
  5. 5.Department of ChemistryUniversity of the LahoreLahorePakistan
  6. 6.President Medal for Technology, U.S Pakistan Centre for Advanced Studies in Energy (USPCAS-E)National University of Sciences and Technology (NUST)IslamabadPakistan
  7. 7.Department of Aeronautics and AstronauticsInstitute of Space TechnologyIslamabadPakistan

Personalised recommendations