Application of isothermal and isoperibolic calorimetry to assess the effect of zinc on cement hydration

  • Pavel Šiler
  • Iva Kolářová
  • Radoslav Novotný
  • Jiří Másilko
  • Jaromír Pořízka
  • Jan Bednárek
  • Jiří Švec
  • Tomáš Opravil
Article

Abstract

The amount of zinc in the clinker or in the secondary raw materials has been increasing in recent years. Zinc can get to Portland cement from solid waste or tires which are widely used as a fuel for burning in a rotary kiln. The aim of this work was to determine the effect of zinc on Portland cement hydration. This effect was studied by isothermal and isoperibolic calorimetry. Both calorimetry methods are suitable for measurements during the first days of hydration. Isoperibolic calorimetry monitors hydration process in real-life conditions, while isothermal calorimetry does it at a defined chosen temperature. Zinc was added to the cement in the form of two soluble salts of Zn(NO3)2, ZnCl2 and a poorly soluble compound ZnO. The concentration of zinc added was chosen as 0.05, 0.1, 0.5 and 1 mass%. The results show that increasing amounts of zinc ions in cement pastes lead to hydration retardation and reduce both the maximum temperature and the maximum heat flow due to the retarding effect of zinc. The newly formed compounds during hydration were identified by X-ray diffraction method.

Keywords

Portland cement Zinc Isothermal calorimetry Solution calorimetry Hydration 

Notes

Acknowledgements

This work was financially supported by the project Materials Research Centre at FCH BUT—Sustainability and Development. REG LO1211 with financial support from National Program for Sustainability I (Ministry of Education Youth and Sports).

References

  1. 1.
    Glasser FP, Marchand J, Samson E. Durability of concrete—degradation phenomena involving detrimental chemical reactions. Cem Concr Res. 2008;38:226–46.CrossRefGoogle Scholar
  2. 2.
    Lawrence CD. The production of low-energy cements. In: Hewlett PC, editor. Lea’s Chemistry of cement and Concrete. 4th ed. Arnold: London-Seydney-Auckland; 1998. p. 421–70.CrossRefGoogle Scholar
  3. 3.
    Palou MT, Šoukal F, Boháč M, Šiler P, Ifka T, Živica V. Performance of G-Oil Well cement exposed to elevated hydrothermal curing conditions. J Therm Anal Calorim. 2014;118(2):865–74.CrossRefGoogle Scholar
  4. 4.
    Chen Y, Odler I. On the origin of Portland cement setting. Cem Concr Res. 1992;22:1130–40.CrossRefGoogle Scholar
  5. 5.
    Hanehara S, Yamada K. Interaction between cement and chemical admixture from the point of cement hydration, absorption behaviour of admixture and paste rheology. Cem Concr Res. 1999;29:1159–65.CrossRefGoogle Scholar
  6. 6.
    Gineys N, Aouad G, Damidot D. Managing trace elements in Portland cement—part I: interactions between cement paste and heavy metals added during mixing as soluble salts. Cem Concr Compos. 2010;32(8):563–70.CrossRefGoogle Scholar
  7. 7.
    Gineys N, Aouad G, Damidot D. Managing trace elements in Portland cement—part II: comparison of two methods to incorporate Zn in cement. Cement and concrete composites. Cem Concr Compos. 2011;33:629–36.CrossRefGoogle Scholar
  8. 8.
    Murat M, Sorrentino F. Effect of large additions of Cd, Pb, Cr, Zn to cement raw metal on the composition and the properties of the clinker and cement. Cem Concr Res. 1996;26(3):377–85.CrossRefGoogle Scholar
  9. 9.
    Andrade FRD, Maringolo V, Kihara Y. Incorporation of V, Zn and Pb into the crystalline phases of Portland clinker. Cem Concr Res. 2003;33:63–71.CrossRefGoogle Scholar
  10. 10.
    Olmo IF, Chacon E, Irabien A. Influence of lead, zinc, iron(III) and chromium(III) oxides the setting time and strength development of Portland cement. Cem Concr Res. 2001;31:1213–9.CrossRefGoogle Scholar
  11. 11.
    Chen QY, Tyrer M, Hills CD, Yang XM, Carey P. Immobilisation of heavy metal in cement-based solidification/stabilisation: a review. Waste Manag. 2009;29(1):390–403.CrossRefGoogle Scholar
  12. 12.
    Rossetti VA, Medici F. Inertization of toxic metals in cement matrices: effects on hydration, setting and hardening. Cem Concr Res. 1995;25:1147–52.CrossRefGoogle Scholar
  13. 13.
    Ataie FF, Juenger MCG, Taylor-Lange SC, Riding KA. Comparison of the retarding mechanisms of zinc oxide and sucrose on cement hydration and interactions with supplementary cementitious materials. Cem Concr Res. 2015;72:128–36.CrossRefGoogle Scholar
  14. 14.
    Moulin I, Stone WEE, Sanz J, Bottero JY, Mosnier F, Haehnel C. Lead and zinc retention during hydration of tri-calcium silicate: a study by sorption isotherms and 29 Si nuclear magnetic resonance spectroscopy. Langmuir. 1999;15(8):2829–35.CrossRefGoogle Scholar
  15. 15.
    Stephan D, Knöfel HD, Eber E, Rärdtl R. Influence of Cr, Ni and Zn on the properties of pure clinker phases: part I C3S. Cem Concr Res. 1999;29:545–52.CrossRefGoogle Scholar
  16. 16.
    Stephan D, Knöfel HD, Eber E, Rärdtl R. Influence of Cr, Ni and Zn on the properties of pure clinker phases: part II C3A and C4AF. Cem Concr Res. 1999;29:651–7.CrossRefGoogle Scholar
  17. 17.
    Weeks C, Hand RJ, Sharp JH. Retardation of cement hydration caused by heavy metals present in ISF slag used as aggregate. Cem Concr Compos. 2008;30:970–8.CrossRefGoogle Scholar
  18. 18.
    Trussell S, Spence RD. A review of solidification/stabilization interferences. Waste Manag. 1994;6:507–19.CrossRefGoogle Scholar
  19. 19.
    Asavapisit S, Fowler G, Cheeseman CR. Solution chemistry during cement hydration in the presence of metal hydroxide wastes. Cem Concr Res. 1997;27:1249–60.CrossRefGoogle Scholar
  20. 20.
    Hamilton IW, Sammes NM. Encapsulation of steel foundry bag house dusts in cement mortar. Cem Concr Res. 1999;29:55–61.CrossRefGoogle Scholar
  21. 21.
    Qian GR, Shiy J, Cao YL, Xu YF, Chui PC. Properties of MSW fly ash–calcium sulfoaluminate cement matrix and stabilization/solidification on heavy metals. J Hazard Mater. 2007;152(1):196–203.CrossRefGoogle Scholar
  22. 22.
    Ziegler F, Scheidegger AM, Johnson CA, Dähn R, Wieland E. Sorption mechanisms of zinc to calcium silicate hydrate: x-ray absorption fine structure (XAFS) investigation. Environ Sci. 2001;35(7):1550–5.CrossRefGoogle Scholar
  23. 23.
    Rose J, Moulin I, Masion A, Bertsch PM, Wiesner MR, Bottero J-Y, Mosnier F, Haehnel C. X-ray absorption spectroscopy study of immobilization processes for heavy metals in calcium silicate hydrates. 2. zinc. Langmuir. 2001;17(12):3658–65.CrossRefGoogle Scholar
  24. 24.
    Ziegler F, Gieré R, Johnson CA. Sorption mechanisms of zinc to calcium silicate hydrate: sorption and microscopic investigations. Environ Sci. 2001;35(22):4556–61.CrossRefGoogle Scholar
  25. 25.
    Stumm A, Garbev K, Beuchle G, Black L, Stemmermann P, Nüesch R. Incorporation of zinc into calcium silicate hydrates, part I: formation of C–S–H(I) with C/S = 2/3 and its isochemical counterpart gyrolite. Cem Concr Res. 2005;35(9):1665–75.CrossRefGoogle Scholar
  26. 26.
    Johnson CA, Kersten M. Solubility of Zn(II) in association with calcium silicate hydrates in alkaline solutions. Environ Sci. 1999;33(13):2296–8.CrossRefGoogle Scholar
  27. 27.
    Ziegler F, Johnson CA. The solubility of calcium zincate (CaZn2(OH)6·2H2O). Cem Concr Res. 2001;31:1327–32.CrossRefGoogle Scholar
  28. 28.
    McWhitnney HG, Cocke DL. A surface study of the chemistry of zinc, cadmium and mercury in Portland cement. Waste Manag. 1993;13:117–23.CrossRefGoogle Scholar
  29. 29.
    Nochaiya T, Sekine Y, Choooun S, Chaipanich A. Microstructure, characterizations, functionality and compressive strength of cement-based materials using zinc oxide nanoparticles as an additive. J Alloys Compd. 2015;630:1–10.CrossRefGoogle Scholar
  30. 30.
    Brandštetr J, Polcer J, Krátký J, Holešinský R, Havlica J. Possibilities of the use of isoperibolic calorimetry for assessing the hydration behaviour of cementitious systems. Cem Concr Res. 2001;31:941–7.CrossRefGoogle Scholar
  31. 31.
    European Committee for Standardization (2010) European standard: Methods of testing cement—part 9: heat of hydration—semi-adiabatic method. EN 196-9:2010 E. Brussels, Belgium.Google Scholar
  32. 32.
    Šiler P, Bayer P, Sehnal T, Kolářová I, Opravil T, Šoukal F. Effects of high-temperature fly ash and fluidized bed combustion ash on the hydration of Portland cement. Cons Build Mater. 2015;78:181–8.CrossRefGoogle Scholar
  33. 33.
    Siler P, Kratky J, Kolarova I, Havlica J, Brandstetr J. Calorimetric determination of the effect of additives on cement hydration process. Chem Pap. 2013;67:213–20.CrossRefGoogle Scholar
  34. 34.
    Siler P, Kolarova I, Kratky J, Havlica J, Brandstetr J. Influence of superplasticizers on the course of Portland cement hydration. Chem Pap. 2014;68:90–7.CrossRefGoogle Scholar
  35. 35.
    Ježo L, Palou M, Kozánková J, Ifka T. Determination of activation effect of Ca(OH)2 upon the hydration of BFS and related heat by isothermal calorimeter. J Therm Anal Calorim. 2010;101:585–93.CrossRefGoogle Scholar
  36. 36.
    Šoukal F, Koplík J, Ptáček P, Opravil T, Havlica J, Palou MT, Kalina L. The influence of pH buffers on hydration of hydraulic phases in system CaO–Al2O3. J Therm Anal Calorim. 2016;124:629–38.CrossRefGoogle Scholar
  37. 37.
    Gruyaert E, Robeyst N, De Belie N. Study of the hydration of Portland cement blended with blast-furnace slag by calorimetry and thermogravimetry. J Therm Anal Calorim. 2010;102:941–51.CrossRefGoogle Scholar
  38. 38.
    Haines PJ. Principles of thermal analysis and calorimetry. London: Royal Society of Chemistry; 2002.CrossRefGoogle Scholar
  39. 39.
    Siler P, Kratky J, De Belie N. Isothermal and solution calorimetry to assess the effect of superplasticizers and mineral admixtures on cement hydration. J Therm Anal Calorim. 2012;107:313–20.CrossRefGoogle Scholar
  40. 40.
    Simard MA, Nkinamubanzi PC, Jolicoeur C, Perraton D, Aïtcin PC. Calorimetry, rheology and compressive strength of superplasticized cement pastes. Cem Concr Res. 1993;23:939–50.CrossRefGoogle Scholar
  41. 41.
    Sleiman H, Perrot A, Amziane S. A new look at the measurement of cementitious paste setting by Vicat test. Cem Concr Res. 2010;40:681–6.CrossRefGoogle Scholar
  42. 42.
    Bensted J. Some applications of conduction calorimetry to cement hydration. Adv Cem Res. 1987;1(1):35–44.CrossRefGoogle Scholar
  43. 43.
    De Schutter G, Taerwe L. General hydration model for Portland cement and blast furnace slag cement. Cem Concr Res. 1995;25:593–604.CrossRefGoogle Scholar
  44. 44.
    De Schutter G. Fundamental and practical study of thermal stresses in hardening massive concrete elements. Ph.D. degree, Ghent, Belgium: Ghent University; 1996.Google Scholar
  45. 45.
    Poppe A-M, De Schutter G. Cement hydration in the presence of high filler contents. Cem Concr Res. 2005;35(12):2290–9.CrossRefGoogle Scholar
  46. 46.
    Novotný R, Bartoníčková E, Švec J, Mončeková M. Influence of active alumina on the hydration process of Portland cement. Proc Eng. 2016;151:80–6.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Pavel Šiler
    • 1
  • Iva Kolářová
    • 1
  • Radoslav Novotný
    • 1
  • Jiří Másilko
    • 1
  • Jaromír Pořízka
    • 1
  • Jan Bednárek
    • 1
  • Jiří Švec
    • 1
  • Tomáš Opravil
    • 1
  1. 1.Faculty of Chemistry, Materials Research CentreBrno University of TechnologyBrnoCzech Republic

Personalised recommendations