Journal of Thermal Analysis and Calorimetry

, Volume 133, Issue 1, pp 355–364 | Cite as

Study on thermal stabilities and symmetries of chemisorbed species formed on K-zeolites upon CO2 adsorption by TPD and in situ IR spectroscopy

  • Yadolah Ganjkhanlou
  • Roman Bulánek
  • Oleg Kikhtyanin
  • Karel Frolich


In the current study, K-zeolites with different structure, Si/Al ratio and morphology have been prepared and then characterized by different techniques including in situ IR spectroscopy upon CO2 sorption and CO2–TPD with the aim of understanding the nature of basic sites present on their surface acting as catalytic sites in aldol condensation reaction. Results showed that depending on the zeolite structure, pore size and Si/Al ratio, two categories of basic sites could be present in potassium modified zeolites. Symmetries of chemisorbed CO2 on these sites are different and comparing the results of TPD and in situ IR spectroscopy; it can be concluded that highly symmetric species (e.g., monodentate carbonates) have higher thermal stability than low symmetric adsorbed species (e.g., bidentate carbonates). It was found that in the zeolite with relatively smaller pore size or less accessible pores (e.g., MFI), second type of adsorbed species is more popular, while highly symmetric species tend to form on large pore zeolites and on materials with some mesoporosity (e.g., BEA or dealuminated FAU zeolites). It is observed that almost all the bidentate species are desorbed at 80 °C, while monodentate species are thermally stable at least up to 130 °C. Based on combination of experimental data obtained from TPD with IR spectroscopy results, origin and assignment of the TPD peaks were discussed.


TPD Zeolite CO2 adsorption Basic sites Potassium IR spectroscopy 



Financial support from the Czech Science Foundation for the project of the Centre of Excellence (P106/12/G015) is gratefully acknowledged.

Supplementary material

10973_2017_6811_MOESM1_ESM.docx (5.2 mb)
Supplementary material 1 (DOCX 5282 kb)


  1. 1.
    Lavalley J. Infrared spectrometric studies of the surface basicity of metal oxides and zeolites using adsorbed probe molecules. Catal Today. 1996;27(3):377–401.CrossRefGoogle Scholar
  2. 2.
    Barthomeuf D, Coudurier G, Vedrine J. Basicity and basic catalytic properties of zeolites. Mater Chem Phys. 1988;18(5–6):553–75.CrossRefGoogle Scholar
  3. 3.
    Barthomeuf D. Framework induced basicity in zeolites. Microporous Mesoporous Mater. 2003;66(1):1–14.CrossRefGoogle Scholar
  4. 4.
    Barthomeuf D. Basic zeolites: characterization and uses in adsorption and catalysis. Catal Rev. 1996;38(4):521–612.CrossRefGoogle Scholar
  5. 5.
    Heidler R, Janssens G, Mortier W, Schoonheydt R. Charge sensitivity analysis of intrinsic basicity of Faujasite-type zeolites using the electronegativity equalization method (EEM). J Phys Chem. 1996;100(50):19728–34.CrossRefGoogle Scholar
  6. 6.
    Walton KS, Abney MB, Douglas LM. CO2 adsorption in Y and X zeolites modified by alkali metal cation exchange. Microporous Mesoporous Mater. 2006;91(1):78–84.CrossRefGoogle Scholar
  7. 7.
    Kikhtyanin O, Bulánek R, Frolich K, Čejka J, Kubička D. Aldol condensation of furfural with acetone over ion-exchanged and impregnated potassium BEA zeolites. J Mol Catal A Chem. 2016;424:358–68.CrossRefGoogle Scholar
  8. 8.
    Di Serio M, Ledda M, Cozzolino M, Minutillo G, Tesser R, Santacesaria E. Transesterification of soybean oil to biodiesel by using heterogeneous basic catalysts. Ind Eng Chem Res. 2006;45(9):3009–14.CrossRefGoogle Scholar
  9. 9.
    Fridell E, Skoglundh M, Westerberg B, Johansson S, Smedler G. NO x storage in barium-containing catalysts. J Catal. 1999;183(2):196–209.CrossRefGoogle Scholar
  10. 10.
    Reddy AS, Gopinath CS, Chilukuri S. Selective ortho-methylation of phenol with methanol over copper manganese mixed-oxide spinel catalysts. J Catal. 2006;243(2):278–91.CrossRefGoogle Scholar
  11. 11.
    Sádaba I, Ojeda M, Mariscal R, Richards R, Granados ML. Mg–Zr mixed oxides for aqueous aldol condensation of furfural with acetone: effect of preparation method and activation temperature. Catal Today. 2011;167(1):77–83.CrossRefGoogle Scholar
  12. 12.
    Kikhtyanin O, Chlubná P, Jindrová T, Kubička D. Peculiar behavior of MWW materials in aldol condensation of furfural and acetone. Dalton Trans. 2014;43(27):10628–41.CrossRefGoogle Scholar
  13. 13.
    Kikhtyanin O, Kelbichová V, Vitvarová D, Kubů M, Kubička D. Aldol condensation of furfural and acetone on zeolites. Catal Today. 2014;227:154–62.CrossRefGoogle Scholar
  14. 14.
    Hora L, Kikhtyanin O, Čapek L, Bortnovskiy O, Kubička D. Comparative study of physico-chemical properties of laboratory and industrially prepared layered double hydroxides and their behavior in aldol condensation of furfural and acetone. Catal Today. 2015;241:221–30.CrossRefGoogle Scholar
  15. 15.
    Kikhtyanin O, Kubička D, Čejka J. Toward understanding of the role of Lewis acidity in aldol condensation of acetone and furfural using MOF and zeolite catalysts. Catal Today. 2015;243:158–62.CrossRefGoogle Scholar
  16. 16.
    Thanh DN, Kikhtyanin O, Ramos R, Kothari M, Ulbrich P, Munshi T, Kubička D. Nanosized TiO2—a promising catalyst for the aldol condensation of furfural with acetone in biomass upgrading. Catal Today. 2016;277:97–107.CrossRefGoogle Scholar
  17. 17.
    Smoláková L, Frolich K, Kocík J, Kikhtyanin O, Čapek L. Surface properties of hydrotalcite-based Zn (Mg) Al oxides and their catalytic activity in aldol condensation of furfural with acetone. Ind Eng Chem Res. 2017;56(16):4638–48.CrossRefGoogle Scholar
  18. 18.
    Nielsen AT, Houlihan WJ. The aldol condensation. Organic reactions. New Jersey: Wiley; 1968.Google Scholar
  19. 19.
    Kikhtyanin O, Ganjkhanlou Y, Kubička D, Bulánek R, Čejka J. Characterization of potassium-modified FAU zeolites and their performance in aldol condensation of furfural and acetone. Appl Catal A. 2018;549:8–18. Scholar
  20. 20.
    Bordiga S, Lamberti C, Bonino F, Travert A, Thibault-Starzyk F. Probing zeolites by vibrational spectroscopies. Chem Soc Rev. 2015;44(20):7262–341. Scholar
  21. 21.
    Solinas V, Ferino I. Microcalorimetric characterisation of acid–basic catalysts. Catal Today. 1998;41(1):179–89.CrossRefGoogle Scholar
  22. 22.
    Yagi F, Tsuji H, Hattori H. IR and TPD (temperature-programmed desorption) studies of carbon dioxide on basic site active for 1-butene isomerization on alkali-added zeolite X. Microporous Mater. 1997;9(5):237–45.CrossRefGoogle Scholar
  23. 23.
    León M, Díaz E, Bennici S, Vega A, Ordónez S, Auroux A. Adsorption of CO2 on hydrotalcite-derived mixed oxides: sorption mechanisms and consequences for adsorption irreversibility. Ind Eng Chem Res. 2010;49(8):3663–71.CrossRefGoogle Scholar
  24. 24.
    Wilmshurst J, Senderoff S. Vibrational spectra of inorganic molecules. II. Infrared reflection spectra of liquid lithium, sodium, potassium, and silver nitrates. J Chem Phys. 1961;35(3):1078–84.CrossRefGoogle Scholar
  25. 25.
    Zhu JH, Wang Y, Chun Y, Wang XS. Dispersion of potassium nitrate and the resulting basicity on alumina and zeolite NaY. J Chem Soc Faraday Trans. 1998;94(8):1163–9.CrossRefGoogle Scholar
  26. 26.
    Ding W, Meitzner GD, Iglesia E. The effects of silanation of external acid sites on the structure and catalytic behavior of Mo/H–ZSM5. J Catal. 2002;206(1):14–22.CrossRefGoogle Scholar
  27. 27.
    Karge HG, Beyer HK. Solid-state ion exchange in microporous and mesoporous materials. Post-Synthesis Modification I. Berlin: Springer; 2002. p. 43–201.Google Scholar
  28. 28.
    Karge HG. Solid-state ion exchange in zeolites. In: Handbook of Heterogeneous Catalysis. Weinheim: Wiley-VCH; 2008.  pp. 484–510.Google Scholar
  29. 29.
    Liu Q, Mace A, Bacsik Z, Sun J, Laaksonen A, Hedin N. NaKA sorbents with high CO2-over-N2 selectivity and high capacity to adsorb CO2. Chem Commun. 2010;46(25):4502–4.CrossRefGoogle Scholar
  30. 30.
    Bulánek R, Frolich K, Frýdová E, Čičmanec P. Microcalorimetric and FTIR study of the adsorption of carbon dioxide on alkali-metal exchanged FER zeolites. Top Catal. 2010;53(19):1349–60. Scholar
  31. 31.
    Gatehouse B, Livingstone S, Nyholm R. The infrared spectra of some simple and complex carbonates. J Chem Soc (Resumed). 1958;636:3137–42.CrossRefGoogle Scholar
  32. 32.
    Bulánek R, Frolich K, Frýdová E, Čičmanec P. Study of adsorption sites heterogeneity in zeolites by means of coupled microcalorimetry with volumetry. J Therm Anal Calorim. 2011;105(2):443–9. Scholar
  33. 33.
    Solymosi F, Knozinger H. Infrared spectroscopic study of the adsorption and reactions of CO2 on K-modified Rh/SiO2. J Catal. 1990;122(1):166–77.CrossRefGoogle Scholar
  34. 34.
    Smoláková L, Frolich K, Troppová I, Kutálek P, Kroft E, Čapek L. Determination of basic sites in Mg–Al mixed oxides by combination of TPD-CO2 and CO2 adsorption calorimetry. J Therm Anal Calorim. 2017;127(3):1921–9. Scholar
  35. 35.
    Guder V, Dalgic SS. Thermodynamic properties of potassium oxide (K2O) Nanoparticles by molecular dynamics simulations. Acta Physica Polonica A. 2017;131(3):490–494.CrossRefGoogle Scholar
  36. 36.
    Baerlocher C. Database of zeolite structures. 2012.
  37. 37.
    Busca G, Lorenzelli V. Infrared spectroscopic identification of species arising from reactive adsorption of carbon oxides on metal oxide surfaces. Mater. Chem. 1982;7(1):89–126.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Department of Physical Chemistry, Faculty of Chemical TechnologyUniversity of PardubicePardubiceCzech Republic
  2. 2.Unipetrol Centre of Research and Education (UNICRE)Záluží-LitvínovCzech Republic
  3. 3.Technopark KralupyUniversity of Chemistry and Technology PragueKralupy nad VltavouCzech Republic

Personalised recommendations