Skip to main content
Log in

Synthesis, thermal and structural characterization of alumina-based pillared α-Ti(IV)hydrogenphosphate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The intercalating properties of α-titanium hydrogenphosphate with general formula Ti(IV)(HPO4)2·H2O (denoted as α-TiP in the following) have been evaluated by preparing two precursors, synthesized by intercalation of hydroalcoholic solutions of n-hexylamine and n-octylamine into the layers of α-TiP. The obtained precursors, slightly hydrolyzed, have interlayer distances two, three or four times larger then the starting material. Afterward, several alumina-pillared α-TiP derivatives were prepared by intercalation of an aluminum Keggin-type ion of general formula [AlO4Al12(OH)24(H2O)12]7+, denoted as Al13, into the layers of the precursors. No evidence of the presence of the previously intercalated amines was revealed by studying the thermal behavior of the so-prepared Al-intercalated materials that were subsequently calcined in air at 600 °C, thus providing thermally stable pillared alumina-based materials. BET surface areas on α-TiP-Al2O3 materials are not noticeable high (from 15 to 55 m2 g−1). However, the highest value is four times than that of α-TiP calcined at the same temperature (layered-TiP2O7). Finally, preliminary catalytic tests were performed on 1-butene isomerization at 450 °C for 80 min, and the results confirmed that Brönsted acid sites of the PO3–OH groups of the starting materials not involved in the intercalation are responsible for the results obtained. It was also possible to preliminarily conclude that the strength of the acid sites is from medium to weak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alberti G, Cardini-Galli P, Constantino U, Torracca E. Crystalline insoluble salts of polybasic metals—I ion-exchange properties of crystalline titanium phosphate. J Inorg Nucl Chem. 1967;29:571–8.

    Article  CAS  Google Scholar 

  2. Alberti G, Constantino U, Giovagnotti ML. Crystalline insoluble acid salts of tetravalent metals—XXVIII synthesis of crystalline Ti(HPO4)2·2H2O by the HF procedure and some comments on its formation and structure. J Inorg Nucl Chem. 1979;41:643–7.

    Article  CAS  Google Scholar 

  3. Clearfield AEd. Inorganic Ion Exchange Materials. Boca Raton: CRC Press Inc; 1982. p. 304.

    Google Scholar 

  4. Ortíz-Oliveros HB, Flores-Espinosa RMA, Ordoñez-Regil E, Fernández-Valverde SM. Synthesis of α-Ti(HPO4)2 H2O and sorption of Eu(III). Chem Eng J. 2014;236:398–405.

    Article  CAS  Google Scholar 

  5. Ferragina C, Frezza A, La Ginestra A, Massucci MA, Patrono P. Intercalation properties of layered metal (IV) phosphates towards organic bases, metal complexes and metal oxides. In: Occelli ML, Robson HE, editors. Expanded clays and other microporous solids, vol. 2. New York: Van Nostrand Reinhold; 1992. p. 263–81.

    Chapter  Google Scholar 

  6. Patrono P, La Ginestra A, Ferragina C, Massucci MA, Frezza A, Vecchio S. Hydrothermal treatment of Zr, Ti, Sn and Ge hydrogenphosphates. Characterization of the derived compounds by thermal methods. J Therm Anal. 1992;38:2603–12.

    Article  CAS  Google Scholar 

  7. La Ginestra A, Patrono P, Frezza A, Mancini C, Massucci MA, Vecchio S. Thermal behavior of mixed Sn and Ge phosphates. Correlations with their catalytic properties. J Therm Anal. 1993;40:1223–32.

    Article  CAS  Google Scholar 

  8. Pica M, Donnadio A, Mariangeloni G, Zuccaccia C, Casciola MA. Combined strategy for the synthesis of double functionalized α-zirconium phosphate organic derivatives. New J Chem. 1993;40:8390–6.

    Article  CAS  Google Scholar 

  9. Casciola M, Capitani D, Donnadio A, Munari G, Pica M. Organically modified zirconium phosphate by reaction with 1,2-epoxydodecane as host material for polymer intercalation: Synthesis and physicochemical characterization. Inorg Chem. 2010;49:3329–36.

    Article  CAS  PubMed  Google Scholar 

  10. Donnadio A, Pica M, Capitani D, Bianchi V. Layered zirconium alkylphosphates: suitable materials for novel PFSA composite membranes with improved proton conductivity and mechanical stability. J Membr Sci. 2014;462:42–9.

    Article  CAS  Google Scholar 

  11. Busca G, Lorenzelli P, Galli P, La Ginestra A, Patrono P. A fourier-transform infrared and catalytic study of the evolution of the surface acidity of zirconium phosphate following heat treatment. J Chem Soc Faraday Trans. 1987;83:853–64.

    Article  CAS  Google Scholar 

  12. La Ginestra A, Patrono P, Berardelli ML, Galli P, Massucci MA, Ferragina C, Ciambelli P. Proceedings of XVII Congress Naz. Chim. Inorg., Cefalù, Palermo, Italy, 1984, p. 369.

  13. Turco M, Bagnasco G, Russo G, Ciambelli P, Patrono P, Massucci MA, Vecchio S. NH3 TPD study and thermal behavior of vanadium-exchanged titanium phosphates as catalysts. Reduction of NO with NH3. J Therm Anal. 1996;47:215–25.

    Article  CAS  Google Scholar 

  14. Abate L, Blanco I, Bottino FA, Di Pasquale G, Fabbri E, Orestano A, Pollicino A. Kinetic study of the thermal degradation of PS/MMT nanocomposites prepared with imidazolium surfactants. J Therm Anal Calorim. 2008;91(3):681–6.

    Article  CAS  Google Scholar 

  15. Ognibene G, Cristaldi DA, Fiorenza R, Blanco I, Cicala G, Scirè S, Fragalà ME. Photoactivity of hierarchically nanostructured ZnO–PES fibre mats for water treatments. RSC Adv. 2016;6:42778–85.

    Article  CAS  Google Scholar 

  16. Jones W, Chibwe M. Pillared layered structures: current trends and applications, 4th Ed., Mitchell Ed., Elsevier Applied Science: Brussels, Belgium, 1990. p. 67.

  17. Reichle WT. Catalysis reaction by thermally activated synthesis, anionic. Clay minerals. J Catal. 1985;94:547–57.

    CAS  Google Scholar 

  18. Sprung R, Davis ME, Kauffman JS, Dybowski C. Pillaring of magadiite with silicate species. Ind Eng Chem Res. 1990;29(2):213–20.

    Article  CAS  Google Scholar 

  19. Schwieger W, Freude D, Werner P, Heidemann D. Direct Synthesis of novel intercalated layered silicates of the metal silicate type. In: Occelli ML, Robson HE. editors. Expanded clays and other microporous solids. New York: Van Nostrand Reinhold; 1992, volume 2, pp. 229–244.

  20. Alberti G, Constantino U. In: Atwood JL., Davies JED., MacNicol DD, editors. Inclusion Compounds, Inorganic and Physical Aspects of Inclusion. Oxford University Press: Oxford, 1991, Chapter 5.

  21. Costantino U, Vivani R, Zima V, Cernoskova E. Thermoanalytical study, phase transitions and dimensional changes of α-Zr(HPO4)2·H2O large crystals. J Solid State Chem. 1997;132:17–23.

    Article  CAS  Google Scholar 

  22. Maireles-Torres P, Olivera-Pastor P, Rodríguez Castellón E, Jiménez López A. Formation of Polypyrrole Chains in Alumina and Chromia-Pillared Layered Phosphates. J Incl Phenom Mol Recogn Chem. 1992;14:327–37.

    Article  CAS  Google Scholar 

  23. Alberti,G, Constantino U. In: Whittingham MS, Jacobson AJ. editors. Intercalation chemistry. Academic Press, New York, 1982, Chapter 5.

  24. Ferragina C, Massucci MA, Patrono P, La Ginestra A, Tomlinson AAG. Pillaring of layers in α-zirconium phosphate by 1,10-phenanthroline and bis(1,10-phenanthroline)copper(II): formation of complex pillars in situ. J Chem Soc Dalton Trans. 1986;2:265–71.

    Article  Google Scholar 

  25. Constantino U. Intercalation of alkanols and glycols into zirconium(IV) hydrogenphosphate monohydrate. J Chem Soc Dalton Trans. 1979;2:402–5.

    Article  Google Scholar 

  26. Clearfield A, Roberts BD. Pillaring of layered zirconium and titanium phosphates. Inorg Chem. 1988;27:3237–40.

    Article  CAS  Google Scholar 

  27. Menéndez F, Espina A, Trobajo C, Rodríguez J. Intercalation of n-alkylamines by lamellar materials of the α-zirconium phosphate type. Mater Res Bull. 1990;25:1531–9.

    Article  Google Scholar 

  28. Espina A, García JR, Guil JM, Jáimez E, Parra JB, Rodríguez J. Calorimetric study of amine adsorption on α- and γ-titanium phosphate. J Phys Chem B. 1998;102:1713–6.

    Article  CAS  Google Scholar 

  29. García-Glez J, Trobajo C, Khainakov SA, Amghouz Z. α-Titanium phosphate intercalated with propylamine: an alternative pathway for efficient europium(III) uptake into layered tetravalent metal phosphates. Arabian J Chem. 2017;10(6):885–94.

    Article  CAS  Google Scholar 

  30. Alberti G, Conte A, Torracca E. Influence of thermal treatment on the rate of ion exchange of zirconium phosphate. J Inorg Nucl Chem. 1966;28:225–31.

    Article  CAS  Google Scholar 

  31. Ramis G, Rossi PF, Busca G, Lorenzelli V, La Ginestra A, Patrono P. Phosphoric acid on oxide carriers. 2. Surface acidity and reactivity toward olefins. Langmuir. 1989;5:917–23.

    Article  CAS  Google Scholar 

  32. La Ginestra A, Patrono P, Berardelli ML, Galli P, Ferragina C, Massucci MA. Catalytic activity of zirconium phosphate and some derived phases in the dehydration of alcohols and isomerization of butenes. J Catal. 1987;103:346–56.

    Article  Google Scholar 

  33. Clearfield YA, Stynes JAJ. The preparation of crystalline zirconium phosphate and some observations on its ion exchange behavior. Inorg Nucl Chem. 1964;26:117–29.

    Article  CAS  Google Scholar 

  34. Park SI, Gocheva I, Okada S, Yamaki J-I. Electrochemical properties of NaTi2(PO4)3 anode for rechargeable aqueous sodium-ion batteries batteries and energy storage. J Electrochem Soc. 2011;158(10):A1067–70.

    Article  CAS  Google Scholar 

  35. Duce C, Vecchio Ciprioti S, Ghezzi L, Ierardi V, Tiné MR. Thermal behavior study of pristine and modified halloysite nanotubes. A modern kinetic study. J Therm Anal Calorim. 2015;121(3):1011–9.

    Article  CAS  Google Scholar 

  36. Vecchio Ciprioti S, Bollino F, Tranquillo E, Catauro M. Synthesis, thermal behavior and physico-chemical characterization of ZrO2/PEG inorganic/organic hybrid materials via sol–gel technique. J Therm Anal Calorim. 2017;130(1):535–40.

    Article  CAS  Google Scholar 

  37. Vecchio Ciprioti S, Catauro M. Synthesis, structural and thermal behavior study of four Ca-containing silicate gel–glasses: activation energies of their dehydration and dehydroxylation processes. J Therm Anal Calorim. 2016;123(3):2091–101.

    Article  CAS  Google Scholar 

  38. De Farias RF, Nunes LM, Airoldi C. The ion-exchange capacity of Ti and Zr lamellar hydrogenphosphates. TG measurements. J Therm Anal Calorim. 2000;60:517–21.

    Article  Google Scholar 

  39. Yori JC, Luy JC, Parera LM. Surface acidity, catalytic activity and selectivity of some oxides supported on alumina. Appl Catal. 1988;41:1–11.

    Article  CAS  Google Scholar 

  40. Johnson CD. In: Clowes W, editor. The Hammet equation. London: Cambridge University Press; 1973.

    Google Scholar 

  41. La Ginestra A, Patrono P, Massucci MA, Galli P, Ferragina C. In: Atti del XIX Congresso Nazionale Chimica Inorganica & VI Congresso Nazionale di Catalisi. S. Margherita di Pula, Cagliari, 1986.

  42. La Ginestra A, Patrono P, Frezza, A, Mancini C, Vecchio S. In: 10th International conference on thermal analysis (ICTA), Hatfield, 1992, Paragraph 6.8. p. 26.

  43. Patrono P, Raspolli Galletti AM, Sbrana G, Massucci MA, Galli P. Heterogeneous zirconium and titanium catalysts for the selective synthesis of 5-hydroxymethyl-2-furaldehyde from carbohydrates. Appl Catal A. 2000;193:147–53.

    Article  Google Scholar 

  44. Bagnasco G, Ciambelli P, La Ginestra A, Turco M. Determination of the surface acidity of layered metal phosphates by NH3 temperature-programmed desorption. Thermochim Acta. 1990;162:91–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author (S. Vecchio Ciprioti, SVC) is deeply indebted to Prof. Aldo La Ginestra, who proposed the main idea of the approach to be used in this study, prepared the α-TiP precursor and supported SVC to collect suitable references for this paper. He is also grateful to Dr. Pasquale Patrono, who performed the XRD experiments and gave support to SVC for the preliminary catalytic tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Vecchio Ciprioti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vecchio Ciprioti, S. Synthesis, thermal and structural characterization of alumina-based pillared α-Ti(IV)hydrogenphosphate. J Therm Anal Calorim 132, 1513–1522 (2018). https://doi.org/10.1007/s10973-017-6810-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6810-6

Keywords

Navigation