Journal of Thermal Analysis and Calorimetry

, Volume 131, Issue 3, pp 3003–3009 | Cite as

An improved model for cold metal transfer welding of aluminium alloys

  • Eriel Pérez Zapico
  • Adrian H. A. Lutey
  • Alessandro Ascari
  • Carlos R. Gómez Pérez
  • Erica Liverani
  • Alessandro Fortunato


An improved model is proposed for automated cold metal transfer (CMT) welding based on a time-dependent double-ellipsoidal volumetric heat flux distribution. Equations are evaluated numerically within COMSOL Multiphysics for CMT welding of a 3-mm-thick AA5754 Al–Mg alloy plate. The simulation calculates transient and steady-state temperature distributions within the weld seam and heat-affected zone (HAZ). Validation of the model is achieved by comparing simulated temperatures with measured values from thermocouples in the HAZ during welding experiments, as well as through comparison of the calculated fusion zone and microscope images of the weld seam. Under steady-state conditions, large differences between the peak and average calculated temperatures in the weld pool highlight the underlying phenomenon responsible for improvements in weld quality for thin sheets with CMT compared to conventional joining processes. The developed simulation provides opportunities for process optimisation and sensitivity analysis in many applications.


Automated CMT Welding Modelling Double-ellipsoidal Thermal cycle 


  1. 1.
    Furukawa K. New CMT arc welding process—welding of steel to aluminium dissimilar metals and welding of super-thin aluminium sheets. Weld Int. 2010;20:440–5.CrossRefGoogle Scholar
  2. 2.
    Pickin CG, Young K. Evaluation of cold metal transfer (CMT) process for welding aluminium alloy. Sci Technol Weld Join. 2006;11:583–5.CrossRefGoogle Scholar
  3. 3.
    Schorghuber M. Cold-metal-transfer welding process and welding installation. Patent US. 2009;20090026188:A1.Google Scholar
  4. 4.
    Mathers G. The welding of aluminium and its alloys. Cambridge: Woodhead Publishing; 2002.CrossRefGoogle Scholar
  5. 5.
    Feng J, Zhang H, He P. The CMT short-circuiting metal transfer process and its use in thin aluminium sheets welding. Mater Des. 2009;30:1850–2.CrossRefGoogle Scholar
  6. 6.
    Gungor B, Kaluc E, Taban E. SIK ŞŞ A. Mechanical and microstructural properties of robotic Cold Metal Transfer (CMT) welded 5083-H111 and 6082-T651 aluminum alloys. Mater Des. 2014;54:207–11.CrossRefGoogle Scholar
  7. 7.
    Ahmad R, Bakar MA. Effect of a post-weld heat treatment on the mechanical and microstructure properties of AA6061 joints welded by the gas metal arc welding cold metal transfer method. Mater Des. 2011;32:5120–6.CrossRefGoogle Scholar
  8. 8.
    Cao R, Yu G, Chen JH, Wang P-C. Cold metal transfer joining aluminium alloys-to-galvanized mild steel. J Mater Process Tech. 2013;213:1753–63.CrossRefGoogle Scholar
  9. 9.
    Cao R, Sun JH, Chen JH. Mechanisms of joining aluminium A6061-T6 and titanium Ti–6Al–4V alloys by cold metal transfer technology. Sci Technol Weld Join. 2013;18:425–33.CrossRefGoogle Scholar
  10. 10.
    Shang J, Wang K, Zhou Q, Zhang D, Huang J, Li G. Microstructure characteristics and mechanical properties of cold metal transfer welding Mg/Al dissimilar metals. Mater Des. 2012;34:559–65.CrossRefGoogle Scholar
  11. 11.
    Zhao B. Analysis of temperature field in friction stir welding based on orthogonal ridgelet finite element method. J Therm Anal Calorim. 2016;123:1751–8.CrossRefGoogle Scholar
  12. 12.
    Chinnadurai T, Arungalai Vendan S. Thermal and structural analysis of ultrasonic-welded PC/ABS blend for automobile applications. J Therm Anal Calorim. 2017;127:1995–2003.CrossRefGoogle Scholar
  13. 13.
    Rosenthal D. The theory of moving sources of heat and its application to metal treatments. ASME Trans. 1946;68:849–66.Google Scholar
  14. 14.
    Pavelic V, Tanbakuchi R, Uyehara OA, Myers PS. Experimental and computed temperature histories in gas tungsten-arc welding of thin plates. Weld J. 1969;48:295–305.Google Scholar
  15. 15.
    Cai Z, Wu S, Lu A, Zhao H, Shi Q. Line Gauss heat source model: an efficient approach for numerical welding simulation. Sci Technol Weld Join. 2001;6:84–8.CrossRefGoogle Scholar
  16. 16.
    Terasaki T, Kitamura T, Akiyama T, Nakatani M. Applicable conditions of instantaneous source used for welding heat conduction. Sci Technol Weld Join. 2005;10:701–5.CrossRefGoogle Scholar
  17. 17.
    Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources. Metall Trans B. 1984;15:299–305.CrossRefGoogle Scholar
  18. 18.
    Aarbogh HM, Hamide M, Fjær HG, Mo A, Bellet M. Experimental validation of finite element codes for welding deformations. J Mater Process Technol. 2010;210:1681–9.CrossRefGoogle Scholar
  19. 19.
    Dhinakaran V, Khope S, Shanmugam NS, Sankaranarayanasamy K. Numerical prediction of weld bead geometry in plasma arc welding of titanium sheets using COMSOL. In: 2014 COMSOL Conference. Bangalore, India, 2014.Google Scholar
  20. 20.
    Shu F-Y, Lü Y-H, Liu Y-X, Xu F-J, Sun Z, He P, Xu B-S. FEM modeling of softened base metal in narrow-gap joint by CMT+ P MIX welding procedure. Trans Nonferr Metal Soc. 2014;24:1830–5.CrossRefGoogle Scholar
  21. 21.
    Azar AS. A heat source model for cold metal transfer (CMT) welding. J Therm Anal Calorim. 2015;122:741–6.CrossRefGoogle Scholar
  22. 22.
    Anwar MS, Untawale SP. Measuring the process efficiency of controlled welding processes. Int J Instrum Control Autom. 2012;1:33–9.Google Scholar
  23. 23.
    Hatch JE, editor. Aluminium: properties and physical metallurgy. Ohio: American Society for Metals; 1984.Google Scholar
  24. 24.
    Hausöl T, Höppel HW, Göken M. Microstructure and mechanical properties of accumulative roll bonded aluminium alloy AA5754. J Phys: Conf Ser. 2010;240:012128.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Eriel Pérez Zapico
    • 1
  • Adrian H. A. Lutey
    • 2
  • Alessandro Ascari
    • 3
  • Carlos R. Gómez Pérez
    • 1
  • Erica Liverani
    • 3
  • Alessandro Fortunato
    • 3
  1. 1.Centro de Investigaciones de Soldadura, Facultad de Ingeniería MecánicaUniversidad Central “Marta Abreu” de Las VillasSanta ClaraCuba
  2. 2.Dipartimento di Ingegneria e ArchitetturaUniversità degli Studi di ParmaParmaItaly
  3. 3.Dipartimento di Ingegneria IndustrialeUniversità di BolognaBolognaItaly

Personalised recommendations