A thermodynamic investigation of the Li–Sb system

  • A. Beutl
  • D. Henriques
  • V. Motalov
  • D. Cupid
  • T. Markus
  • H. Flandorfer
Article
  • 45 Downloads

Abstract

Many standard thermodynamic data in the binary system Li–Sb can be found in literature; however, they are often derived from electrochemical measurements taken at higher temperatures. The uncertainties associated with the extrapolation of these high-temperature data to room temperature are, however, inherently large. Therefore, a comprehensive investigation of the thermodynamic properties in the Li–Sb system was conducted in this work to generate more reliable data. Four different experimental techniques were used for the investigations. The heat capacities for both binary compounds, Li2Sb and Li3Sb, were measured for the very first time. In addition, the enthalpies of formation for both compounds were determined by drop solution and direct reaction calorimetry. Furthermore, Knudsen effusion mass spectrometry was performed to measure partial enthalpies and activities of Sb.

Keywords

Cp Calorimetry KEMS Li–Sb Thermodynamics 

Notes

Acknowledgements

This work was supported by the German Research Foundation “Deutsche Forschungsgemeinschaft (DFG)” within the DFG priority program SPP1473 “WeNDeLIB.” V. Motalov thanks the Ministry of Education and Science of the Russian Federation (Project No. 4.3232.2017/PP).

References

  1. 1.
    Kubaschewski O, Seith W. Bildungswärmen von Nichteisenmetall-Legierungen. Z Metallkd. 1938;30:7–9.Google Scholar
  2. 2.
    LeBeau MP. Sur l’antimonuire de lithium et sur la preparation de quelques alliages de ce metal. C R Hebd Seances Acad Sci. 1902;134:231–3.Google Scholar
  3. 3.
    Kubaschewski O, Caterall JA. Thermochemical data of alloys. London: Pergamon Press; 1956.Google Scholar
  4. 4.
    Shchukarev SA, Vol’f E, Morozova MP. The enthalpy of formation of lithium antimonide. Zh Obshch Khim. 1954;24:1925–6.Google Scholar
  5. 5.
    Weppner W, Huggins RA. Thermodynamic properties of the intermetallic systems lithium–antimony and lithium–bismuth. J Electrochem Soc. 1978;125:7–14.CrossRefGoogle Scholar
  6. 6.
    Nikitin AV, Demidov AI, Morachevskii AG. Study of alloy formation in the cathodic polarization of antimony in molten salts. J Appl Chem-USSR. 1980;53:1641–4.Google Scholar
  7. 7.
    Nikitin AV, Demidov AI, Morachevskii AG, Matveev VA, Il’ina OI. Thermodynamics of lithium-antimony system solid alloys. J Appl Chem-USSR. 1982;55:915–6.Google Scholar
  8. 8.
    Demidov AI, Dukhanin GP, Morachevskii AG. Alloy formation during the deposition of lithium on antimony and bismuth cathodes. Elektrokhimiya. 1983;19:1695–9.Google Scholar
  9. 9.
    Kane MM, Newhouse JM, Sadoway DR. Electrochemical determination of the thermodynamic properties of lithium–antimony alloys. J Electrochem Soc. 2015;162:A421–5.CrossRefGoogle Scholar
  10. 10.
    Terlicka S, Dębski A, Fima P. Enthalpy of formation of Li2Sb and Li3Sb and mixing enthalpy of liquid Li–Sb alloys. J Alloys Compd. 2016;673:272–7.CrossRefGoogle Scholar
  11. 11.
    Li D, Beutl A, Flandorfer H, Cupid DM. The Li–Sb phase diagram part II: calorimetry and thermodynamic assessment. J Alloys Compd. 2017;701:186–99.CrossRefGoogle Scholar
  12. 12.
    Jackson ED, Mosby JM, Prieto AL. Evaluation of the electrochemical properties of crystalline copper antimonide thin film anodes for lithium ion batteries produced by single step electrodeposition. Electrochim Acta. 2016;214:253–64.CrossRefGoogle Scholar
  13. 13.
    Haomiao L, Kangli W, Shijie C, Kai J. High performance liquid metal battery with environmentally friendly antimony–tin positive electrode. ACS Appl Mater Interfaces. 2016;8:12830–5.CrossRefGoogle Scholar
  14. 14.
    Beutl A, Cupid D, Flandorfer H. The Li–Sb phase diagram part I: new experimental results. J Alloys Compd. 2017;695:1052–60.CrossRefGoogle Scholar
  15. 15.
    Della-Gatta G, Richardson MJ, Sarge SM, Stolen S. Standards, calibration, and guidelines in microcalorimetry—part 2. Calibration standards for differential scanning calorimetry—(IUPAC technical report). Pure Appl Chem. 2006;78:1455–76.CrossRefGoogle Scholar
  16. 16.
    Flandorfer H, Gehringer F, Hayer E. Individual solutions for control and data acquisition with the PC. Thermochim Acta. 2002;382:77–87.CrossRefGoogle Scholar
  17. 17.
    Henriques D, Motalov V, Bencze L, Fürtauer S, Markus T. Experimental thermodynamics of the Li–Sn system by Knudsen effusion mass spectrometry. J Alloys Compd. 2014;585:299–306.CrossRefGoogle Scholar
  18. 18.
    Hilpert K, Ruthardt K. Determination of the dissociation energy of the diatomic chromium molecule. Ber Bunsenges Phys Chem. 1987;91:724–31.CrossRefGoogle Scholar
  19. 19.
    Brauer G, Zintl E. Konstitution von Phosphiden, Arseniden, Antimoniden und Wismutiden des Lithiums, Natriums und Kaliums. Z Phys Chem Abt B Chem Elem Aufbau Mater. 1937;37:323–52.Google Scholar
  20. 20.
    Müller W. Darstellung und Struktur der Phase Li2Sb. Z Naturforsch Pt B. 1977;32:357–9.Google Scholar
  21. 21.
    Barrett CS, Cucka P, Haefner K. The crystal structure of antimony at 4.2, 78 and 298°K. Acta Crystallogr. 1963;16:451–3.CrossRefGoogle Scholar
  22. 22.
    Dinsdale AT. SGTE Data for Pure Elements. Calphad. 1991;15:317–425.CrossRefGoogle Scholar
  23. 23.
    Emsley J. The elements. New York: Oxford University Press; 1989.Google Scholar
  24. 24.
    Gérardin R, Aubry J. Préparation et identification d’un nouveau compose. binaire Li2Sb. C R Acad Sci Paris Sér C. 1974;278:1097–8.Google Scholar
  25. 25.
    Thomas D, Abdel-Hafiez M, Gruber T, Huttl R, Seidel J, Wolter AUB, Buchner B, Kortus J, Mertens F. The heat capacity and entropy of lithium silicides over the temperature range from (2 to 873) K. J Chem Thermodyn. 2013;64:205–25.CrossRefGoogle Scholar
  26. 26.
    Thomas D, Zeilinger M, Gruner D, Huttl R, Seidel J, Wolter AUB, Fassler TF, Mertens F. The heat capacity and entropy of the lithium silicides Li17Si4 and Li16.42Si4 in the temperature range from (2 to 873) K. J Chem Thermodyn. 2015;85:178–90.CrossRefGoogle Scholar
  27. 27.
    Schäfer H, Axel H, Menges E, Weiss A. Crystal structure of the phase Li7Si2. Z Naturforsch B. 1965;20b:1010.Google Scholar
  28. 28.
    Schneider A, Hilmer O. Wärmeinhalte und Schmelzentroien von NaTl-Phasen. Z Anorg Allg Chem. 1956;286:97–117.CrossRefGoogle Scholar
  29. 29.
    Binnewies M, Milke E. Thermochemical data of elements and compounds. Weinheim: Wiley; 2002.CrossRefGoogle Scholar
  30. 30.
    Haynes WM, Lide DR. CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data. 95th ed. Boca Raton: CRC Press/Taylor and Francis; 2011.Google Scholar
  31. 31.
    Raj D, Bencze L, Kath D, Oates WA, Herrmann J, Singheiser L, Hilpert K. Thermodynamic activity measurements in the B2 phases of the Fe–Al and Ni–Al systems. Intermetallics. 2003;11:1119–24.CrossRefGoogle Scholar
  32. 32.
    Gurvich LV, Iorish VS, Chekhovskoi DV, Ivanisov AD, Proskurnev AY, Yungman VS, Medvedev VA, Veits IV, Bergman GA. IVTHANTHERMO—database on thermodynamic properties of individual substances. Moscow: Institute of High Temperatures; 1993.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • A. Beutl
    • 1
  • D. Henriques
    • 2
  • V. Motalov
    • 3
    • 4
  • D. Cupid
    • 5
  • T. Markus
    • 2
  • H. Flandorfer
    • 1
  1. 1.Institute of Inorganic Chemistry – Functional MaterialsUniversity of ViennaViennaAustria
  2. 2.Institute for Thermo - and FluiddynamicsMannheim University of Applied SciencesMannheimGermany
  3. 3.Institute for Energy and Climate Research (IEK, Forschungszentrum Jülich GmbH-2)JülichGermany
  4. 4.Research Institute of Thermodynamics and KineticsIvanovo State University of Chemistry and TechnologyIvanovoRussia
  5. 5.Institute for Applied Materials - Applied Materials Physics (IAM-AWP)Karlsruhe Institute of Technology (KIT)Eggenstein-LeopoldshafenGermany

Personalised recommendations